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Dysfunctions of the serotonergic system have been 
implicated in a number of psychiatric disorders including 
depression, anxiety and disorders of impulse control. To 
model these disorders we have generated mice with altered 
serotonergic systems. Specifically, we have created mice that 
lack or express reduced levels of two serotonin receptors: 
5-HT1A and 5-HT1B receptors. These receptors are 
localized both on serotonergic neurons where they act as 
autoreceptors and on non-serotonergic neurons. As a result, 
the 5-HT1A and 5-HT1B receptors control the tone of the 
serotonergic system and mediate some of the postsynaptic 
effects of serotonin. Agonists of these receptors are currently 
used in the treatment of migraine and anxiety disorders. 
Mice lacking these receptors develop, feed, and breed 

normally and do not display any obvious abnormalities. 
However, when analyzed in a number of behavioral 
paradigms, the 5-HT1A and 5-HT1B knockout mice display 
a number of contrasting phenotypes. While the 5-HT1B 
knockout mice are more aggressive, more reactive, and less 
anxious than the wild-types, the 5-HT1A knockouts are less 
reactive, more anxious, and possibly less aggressive than the 
wild-types. We are currently investigating with tissue-
specific knockout mice which neural circuits are responsible 
for these phenotypes.
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We will first review briefly the role of serotonin, specifi-
cally of the 5-HT1A and 5-HT1B receptors, in the modu-
lation of aggressiveness and anxiety-related behaviors.
Next, we will use our recently published data to pro-
pose that 5-HT1A and 5-HT1B receptors have opposite
effects on mood control. Finally, we will present a strat-
egy that may enable us to identify the neural circuits
underlying the effects of the 5-HT1A and 5-HT1B recep-
tors on emotional states.

 

SEROTONIN AND AGGRESSIVE BEHAVIOR

 

Serotonin appears to play a key role in determining the
vulnerability of humans and other animals to aggres-
sion and violence. An inverse relation between the ac-
tivity of the serotonergic system and aggressive behav-
ior has been found. In humans, low brain serotonin
turnover rates and blunted neuroendocrine responses
to serotonergic agonists (which might reflect a low cen-
tral serotonin activity) have been found in individuals
who engage in impulsive violent behaviors (Coccaro
1989; Coccaro et al. 1989; Linnoila et al. 1983). Antisocial
personality disorder and type II alcoholism, two condi-
tions displaying elevated levels of impulsivity and ag-
gression, are associated with low levels of CSF 5-HIAA
(the major metabolite of 5-HT) (Brown et al. 1982; Coc-
caro et al. 1997; Virkkunen et al. 1995; Virkkunen and
Linnoila 1993). Likewise, impulsive, self-directed vio-
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lence in the form of suicide has also been associated
with low levels of brain 5-HT, CSF 5-HIAA (Asberg et
al. 1976; Linnoila and Virkkunen 1992; Mann et al. 1989,
1990, 1996), and altered serotonin receptor binding (Ar-
ranz et al. 1994; Lowther et al. 1994; Pandey et al. 1995).
Polymorphisms of the tryptophan hydroxylase enzyme
(the rate-limiting enzyme for 5-HT synthesis) have also
been associated with increased violence and suicide
(Nielsen et al. 1994, 1998). Non-human primates with
low CSF 5-HIAA exhibit increased impulsive and ag-
gressive behavior, poorer social functioning, increased
risk taking, and shorter life span. Critical to our under-
standing of impulsivity and aggression are the ques-
tions of how 5-HT can modulate these behavioral states,
how 5-HT abnormalities are produced, and what are
the effects of 5-HT dysregulation on the functioning of
other systems. Clues to these questions in humans can
perhaps be found in the study of aggressive and impul-
sive behavior in simpler model systems such as labora-
tory rodents in which serotonergic function can be
modified. Depletion of brain serotonin in rats and mice
increases aggressive behavior (Vergnes et al. 1986)
whereas manipulations that increase brain serotonin re-
duce natural aggressive behaviors (Molina et al. 1987).

Pharmacological studies have pointed toward an in-
volvement of specific serotonin receptors in modulating
aggressive behavior. In particular, certain mixed ago-
nists of the 5-HT1A and 5-HT1B receptors, have been
termed “serenics” because of their selective ability to in-
hibit aggressive behavior without sedation (Mos et al.
1992; Olivier and Mos 1990; Olivier et al. 1989). The
anti-aggressive effects of eltoprazine (a prototypical se-
renic and a mixed 5-HT1A/1B agonist) appear to be
mediated primarily by 5-HT1B receptors.

 

SEROTONIN IN DEPRESSION AND ANXIETY

 

Serotonin has been implicated not only in the control of
aggressive behavior but also in the modulation of sleep,
appetite, sexual behavior, motor functions, analgesia,
and stress responses. The role of serotonin in modulat-
ing stress and anxiety responses has important clinical
ramifications. A number of psychiatric disorders are
thought to be caused by dysfunctions in the serotoner-
gic system (Owens and Nemeroff 1994). For example,
low levels of 5-HT and its metabolite, 5-HIAA, have
been found in the brains and CSF of depressed subjects
(Brown and Linnoila 1990; Mann et al. 1990; Risch and
Nemeroff 1992; Widerlov et al. 1988). Abnormal endo-
crine responses to serotonergic releasing agents (e.g.,
fenfluramine) have also been reported for individuals
with depression (Dinan 1996; Flory et al. 1998; Mann et
al. 1995; O’Keane and Dinan 1991), panic disorder (Tar-
gum 1990a, b; Targum and Marshall 1989), and obses-

sive compulsive disorder (Hewlett et al. 1992; Lucey et
al. 1992a, b). Depletion of serotonin (via dietary tryp-
tophan restriction) provokes relapse of previously re-
covered depressed subjects (Delgado et al. 1991, 1993).
Evidence for the involvement of serotonin in anxiety
comes from the demonstration that 5-HT receptor ago-
nists, such as m-CPP, can induce acute states of panic
and anxiety in psychiatric patients and normal volun-
teers (Murphy et al. 1989), and that antidepressant
drugs, especially selective serotonin reuptake inhibitors
(SSRI), have therapeutic effects in multiple anxiety dis-
orders (Lucki 1996). SSRIs enhance 5-HT neurotrans-
mission by preventing the reuptake of 5-HT and in-
creasing extracellular levels of 5-HT. However, the
original hypothesis implicating serotonin in anxiety
arose from observations that the inhibition of 5-HT re-
lease can produce anxiolytic-like behavioral effects (Tye
et al. 1979) and may mediate some of the anti-anxiety
effects of benzodiazepines in animals. More recent evi-
dence for serotonin’s involvement in anxiety derives
from the development of buspirone as the clinical pro-
totype of a series of compounds (azapirones: gepirone,
ipsapirone, and tandospirone) that appear to be effec-
tive at treating generalized anxiety disorder. These
compounds are 5-HT1A receptor partial agonists (Pe-
routka 1985; Tunnicliff 1991).

 

5-HT1B RECEPTOR

 

The 5-HT1B receptor is expressed in many brain struc-
tures and has been shown to play a role in movement,
sensory motor gating, and appetite control. Highest lev-
els of receptor protein are found in the substantia nigra,
globus pallidus, dorsal subiculum of the hippocampus,
central grey, superior colliculus, lateral geniculate
nucleus, and in the deep nuclei of the cerebellum
(Boschert et al. 1994). The 5-HT1B receptor is also found
on the terminals of serotonergic neurons where it acts
as an autoreceptor.

Important clues into the role of 5-HT1B receptor in
behavior come from studies of 5-HT1B receptor KO
mice (1BKO) (for a review see Stark and Hen in press).
These mice are more aggressive than wild-type mice
(Saudou et al. 1994), confirming the proposed link be-
tween 5-HT1B receptors and aggressive behavior (Oliv-
ier and Mos 1990). 5-HT1B KO mice are also more moti-
vated to self-administer cocaine, suggesting a modulatory
role of serotonin on the dopaminergic reward pathways
(Rocha et al. 1998). A number of polymorphisms have
been identified in the human 5-HT1B gene (Huang et al.
in press). One of these polymorphisms appears to be as-
sociated in two independent populations with antiso-
cial personality disorder and alcoholism (Lappalainen
et al. 1998).
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5-HT1A RECEPTOR

 

The 5-HT1A receptor mRNA and protein are expressed
primarily in the dentate gyrus and CA1 regions of the
hippocampus, amygdala, entorhinal cortex, lateral sep-
tum, and raphé nuclei (Laporte et al. 1994). The exist-
ence of specific 5-HT1A ligands has made it possible to
study the function of this receptor (Hamon et al. 1990;
Fletcher et al. 1996).

One problem that has plagued investigations of 5-HT1A
receptors and their behavior is the difficulty in deter-
mining whether presynaptic or postsynaptic receptors
mediate these behavioral effects. Current pharmacolog-
ical approaches to this question require examining the
behavioral effects of 5-HT1A agonists after the deple-
tion of 5-HT by neurotoxic lesions or inhibition of 5-HT
synthesis, or local intracerebral injections of 5-HT1A ago-
nists in different brain regions. However, all these ap-
proaches have demonstrated limitations. This is the rea-
son why we are currently using a genetic strategy to
assess the role of the pre- and postsynaptic 5-HT1A re-
ceptors.

The current working hypothesis is that anxiolytic ef-
fects of 5-HT1A agonists are mediated, at least in part,
by presynaptic receptors. However, there are also re-
ports that injections of 5-HT1A agonists in postsynaptic
structures have various effects on anxiety-related be-
haviors. In addition there are suggestions that 5-HT1A
agonists have different effects depending on the models
of anxiety that are used.

The proposed role of 5-HT1A receptors in modulat-
ing anxiety-related behaviors is also supported by be-
havioral studies of 5-HT1A receptor knockout mice
(1AKO). these mice show increased anxiety in the ele-
vated plus maze, open field, and novelty-suppressed
feeding paradigms (Heisler et al. 1998; Parks et al. 1998;
Ramboz et al. 1998; our unpublished results).

 

Differential Localization of the 5-HT1A and 
5-HT1B Receptors

 

The 5-HT1A and 5-HT1B receptors share the property
of being “inhibitory receptors” expressed by both sero-
tonergic and non-serotonergic neurons. They are, there-
fore, both autoreceptors which inhibit the activity of se-
rotonergic neurons and heteroreceptors which inhibit
the activity of non-serotonergic neurons (Figure 1).
However, the analogy stops there since these two re-
ceptors are expressed in distinct subcellular compart-
ments and are inhibitory via distinct mechanisms. Spe-
cifically, the 5-HT1A receptor is expressed on somas
and dendrites of neurons and its activation results in a
decrease of neuronal firing, presumably via an interac-
tion with G-protein-gated ion channels (McAllister-Wil-
liams and Kelly 1995). In contrast, the 5-HT1B receptor

is transported toward axon terminals (Boschert et al.
1994) and its activation has been shown to result in an
inhibition of transmitter release. The intracellular effec-
tors of the 5-HT1B receptor have been suggested to be
ion channels (Ghavami et al. 1997). Recently, we have
shown that the coding sequences of the 5-HT1A and
5-HT1B receptors are responsible for the specific ad-
dressing of these proteins toward somato-dendritic and
axonal compartments, respectively (Ghavami et al. 1999).

 

1AKO AND 1BKO MICE EXHIBIT OPPOSING 
BEHAVIORAL PHENOTYPES

 

We have completed a basic behavioral characterization
of the 5-HT1A and 5-HT1B knockout mice. The 1AKO
and 1BKO mice were characterized in several tests of lo-
comotion/exploratory behavior (open field), anxiety
(ultra-sonic vocalizations, open field, and elevated plus
maze), and aggressive behavior (resident-intruder test
and maternal aggression test) (Saudou et al. 1994; Ram-
boz et al. 1998; Brunner et al. in press; Stark et al. 1999;
our unpublished observations). Interestingly, these two
knockout strains displayed opposite behavioral pheno-
types in all of these tests. These results are summarized
in Table 1.

 

Reactivity to Novel Environments and Anxiety

 

1BKO mice seem to be more reactive in almost all the
behavioral tests we have performed to date, but they do
not show hyperactivity in base-line conditions (activity
in home cage). For instance, in open field tests the
1BKO are more active than the WT (Figure 2). However,
this difference in activity appears to result from a differ-
ence in reactivity to the novel environment or in explor-

Figure 1. Localization of the 5-HT1A and 5-HT1B recep-
tors. We have represented brain circuits that contain 5-HT1A
(1A) and 5-HT1B (1B) receptors and that may be responsible
for the effects of these receptors on mood control. Neurons
projecting from the amygdala (amyg) to the periacqueductal
gray matter (PAG) and serotonergic neurons projecting from
the Raphé nuclei to the amygdala and PAG.
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atory activity, since the difference disappears after re-
peated open field exposures (not shown). The 1AKO
mice, on the contrary, show decreased reactivity/ex-
ploratory activity in the open field (Figure 2) (Ramboz
et al. 1998).

In the open field, mice face a conflict between avoid-
ance and exploration of the center which is more aver-
sive than the peripheral area proximal to the walls.
Therefore, the open field is sometimes also used as an
anxiety test. We and others have shown that measures
of behavior in the open field fall in two main factors: 1)
time and distance traveled in the center, which may be
related to anxiety; and 2) total distance traveled and
rearings, which reflect general behavioral activation or
exploration (Ramboz et al. 1998). The behaviors of the
1BKO and 1AKO appear to be opposite, with the 1BKO
displaying more exploratory activity and less anxiety-
related behavior, and the 1AKO displaying less explor-
atory activity and more anxiety-related behaviors. We
have confirmed this interpretation by performing a
number of additional anxiety tests: the elevated plus
maze and the novelty-suppressed feeding test. Like in
the open field, in these tests the 1AKO appears more
anxious than the WT, whereas the 1BKO are less anx-

 

Table 1.

 

5-HT1B and 5-HT1A KO mice show opposite 
behavioral phenotypes

1B KO 1A KO

 

Anxiety Decreased Increased
Reactivity Increased Decreased
Aggression Increased Decreased

 

Anxiety was assessed in the elevated plus maze, in the novelty sup-
pressed feeding paradigm, and in the open field.

Reactivity was assessed in the open field and aggression was assessed
in the resident intruder paradigm.

The aggressive behavior of the 5-HT1A knockout has not yet been
fully characterized.

Figure 2. Activity in an open-field. Open-field activity was analyzed as described in Ramboz et al. 1998. Significant ANO-
VAs were found for total path length (F2, 32 5 24.49 p , .001), rearings (F2, 32 5 13.40 p , .0001), and for path in the center
over total path length (F2, 32 5 6.37 p , .01). Post hoc test, * p , .05 and *** p , .001 when compared to WT group.
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ious than the WT (Ramboz et al. 1998; our unpublished
observations).

 

Increased Aggressive Behavior in 1BKO Mice

 

Our laboratory’s studies with the 1BKO mice indicate
that the mutant males are more aggressive in the resi-
dent intruder aggression test (Saudou et al. 1994). Isola-
tion of male mice for one or more weeks results in in-
creased aggression towards an intruder in their home
cage (Brain 1975). In this test, the 1BKO mice attack
more vigorously and more rapidly than the WT. A
qualitative analysis of the attacks during the 3 min. test
period, revealed marked differences between WT and
1BKO mice (Ramboz et al. 1996). Twenty-nine percent
of the 1BKO residents attacked the intruder within less
than 10 sec. after bringing the intruder into the cage,
whereas no WT mice attacked the intruder during the
same time interval. Conversely, 75% of the WT mice
and only 21% of the 1BKO mice did not attack during
the entire 3 min. test period. These results indicate that
the 1BKO mice are more aggressive and perhaps more
impulsive than the WT mice (Brunner and Hen 1997).

We, then, tested whether this difference in attack la-
tency was due to a differential response of WT and
1BKO mice to isolation, or whether it represented a dif-
ference in territorial aggression. Males of both geno-
types were either isolated or housed for one week with
one female. On the day of testing, the female was removed
and a male intruder that had been group-housed was
introduced into the cage. In both paradigms, male mice
attacked faster than WT mice (our unpublished obser-
vations).

In addition, we found that aggressive behavior was
also higher in 1BKO females. However, 1BKO females,
like wild-type females, displayed aggressive behavior
toward intruders only in the presence of their pups (un-
published observations).

 

Gene Expression Changes in 1AKO and 1BKO Mice

 

In addition to changes in aggressive behavior, the
1BKO mice also display differences in other traits in-
cluding increased vulnerability to cocaine and alcohol
consumption (Crabbe et al. 1996; Rocha et al. 1997,
1998). Cocaine elicits a larger locomotor response and
appears to be more rewarding in KO than in WT mice.
These effects appear to result from both pre- and post-
synaptic changes in the dopaminergic pathways. Spe-
cifically, cocaine elicits larger increases in extracellular
dopamine levels in the nucleus accumbens of the KO
than in the WT. In addition, levels of D1 receptor
mRNA and protein, as measured by in situ hybridiza-
tion and autoradiography, are increased in the KO.

Other changes in gene expression have also been identi-
fied in the 1BKO. In particular, the 

 

fosB

 

 protein, which
is induced by repeated cocaine exposure, was up-regu-
lated in the nucleus accumbens of the 1BKO mice 

 

before

 

they had ever been exposed to cocaine (Rocha et al.
1998). We interpreted these changes in gene expression
that occurred in the 1BKO mice to mean that the con-
genital absence of the 5-HT1B receptor results in com-
pensatory or adaptive changes. Variations in gene ex-
pression in the nucleus accumbens may be correlated to
increased vulnerability to substance use. Other com-
pensatory changes in gene expression in distinct neural
circuits may underlie the differences in aggressive and
anxious-like behaviors displayed by 1BKO and 1AKO
mice. The 1BKO and 1AKO mice may therefore be a
useful model to identify candidate genes that are in-
volved in vulnerability towards aggressive and/or anx-
ious-like behaviors.

 

TISSUE SPECIFIC RESCUE OF THE 5-HT1B AND 
5-HT1A RECEPTORS

 

In order to identify which neuronal circuits are respon-
sible for the phenotypes of 1AKO and 1BKO mice, we
have developed a strategy that will enable us to re-
express in the knockout mice the missing receptor, but
only in a subset of the structures where that receptor is
normally found. This strategy is based on the ability of
the Cre recombinase to excise a transcriptional stop
DNA sequence flanked by loxP sites (Tsien et al. 1996).
When designing the 5-HT1B and 5-HT1A targeting vec-
tors, we flanked the neo-stop cassette containing the

 

pGK-neo

 

 gene and transcriptional stop sequences with
loxP sites so that these sequences could be removed by
the Cre recombinase either at the ES cell stage or in the
knockout mice (Figure 3) (Stark et al. 1998). We found
that, in both cases, removing the neo-stop sequences re-
sulted in reactivation of the knocked out receptor in the
animal. This set the stage for using various Cre-express-
ing transgenic lines to restore receptor expression in
specific tissues. We have successfully performed such
an experiment in the case of the neo-stop 5-HT1A KO
mice. Specifically, after breeding 5-HT1A KO mice with
transgenic mice expressing the Cre recombinase under
the control of the CaM Kinase II promotor 5-HT1A re-
ceptor expression was rescued in the CNS (Figure 3).
Additional Cre lines exist which function specifically in
hippocampus and amygdala (I. Mansuy and X.
Zhuang, unpublished results). We are also currently
generating a line that expresses the Cre recombinase
under the control of the promoter of the serotonin
transporter. Such a line should enable us to selectively
rescue the 5-HT1A or 5-HT1B autoreceptors.
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Models That Can Be Tested with the 
Tissue-Specific Rescues

 

Our goal is to identify the neural circuits that are re-
sponsible for the phenotype of the 1AKO and 1BKO
mice. The fact that at least three different phenotypes
are associated in each of these KO mice and the fact that
all three phenotypes are opposite in the 1AKO and
1BKO mice, might suggest a causal link between these
phenotypes. One example of such a causal link is illus-
trated in Model 1 (Figure 4). In this scenario, 5-HT1A
receptors in brain area A and 5-HT1B receptors in brain
area B (A and B can be different or identical) are in-
volved in the modulation of reactivity and/or anxiety
which may be expressed by brain area C (again C can
be different from A and B, or identical). A consequence
of the hyper-reactive or less anxious phenotype (5-
HT1B KO mice) may be an increase in aggressive be-
havior (which could result in activation of brain area
D). Alternatively, a model without causal links between
the reactive/anxious phenotype and the aggressive one
is also possible (see Model 2). In the second model, in-

dependent circuits are responsible for the different phe-
notypes. These two models are, of course, not mutually
exclusive and it is conceivable that a causal relation ex-
ists in one of the knockouts and not in the other.

The tissue-specific rescue strategy should enable us
to discriminate between these models. Specifically, if
we can rescue one of the behaviors but not the others,
we will favor Model 2. If, on the other hand, we rescue
all behaviors at once we will favor Model 1.

 

CONCLUSIONS

 

Using the gene targeting technology, we have gener-
ated new strains of mice lacking specific serotonin re-
ceptors and displaying a variety of phenotypes. Some
of these phenotypes appear to reflect the known func-
tions of these receptors which, until recently, have been
investigated only with classical pharmacological tools.
For example, agonists of the 5-HT1A and 5-HT1B recep-
tors have been shown to decrease anxiety and aggres-

Figure 3. Tissue-specific rescue of the 5-HT1A receptor. Knockout mice were generated by inserting a removable stop cas-
sette in the 5’-untranslated sequence of the 5-HT1A gene (Stark et al. 1998). These Neo-stop mice did not express any detect-
able level of 5-HT1A receptor as assessed by autoradiography with 125I-MPPI (Ramboz et al. 1998). To rescue 5-HT1A
receptor expression the Neo-stop mice were bred with transgenic mice that express the Cre recombinase under the control of
the CaMKII promoter (a gift from I. Mansuy and E. Kandel). The resulting rescue mice re-express the 5-HT1A receptor in
hippocampus as well as in a number of other brain regions.
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sive behavior. At first glance, the aggressive and anx-
ious phenotype of the 5-HT1B and 5-HT1A knockout
mice might, therefore, seem predictable. However, a
closer inspection of the relevant pharmacological stud-
ies reveals that the effects of these receptors on anxiety
or aggressive behavior depend on where they are located
in the brain. For example, activation of the 5-HT1A au-
toreceptor may decrease anxiety, whereas, activation of
postsynaptic 5-HT1A receptors has been suggested to in-
crease anxiety.

Classical knockouts lack both auto- and heterorecep-
tor; it is, therefore, not possible to predict which effect
will predominate. Furthermore, antagonists often do
not appear to mimic the phenotypes of knockout mice.
For example, an acute administration of the 5-HT1B an-
tagonist GR127935 has no effect on aggressive behavior
or on cocaine self-administration (our unpublished re-
sults). Such differences between knockouts and antago-
nists might result from the fact that in knockout mice
the receptor is absent throughout development. As a re-
sult, compensatory changes might occur, which will in-
fluence the phenotype of the adult animal.

To draw conclusions from the analysis of the mutant
phenotype, it is, therefore, necessary to know the state
of other receptors and systems that might have been
up- or down-regulated to compensate for the absence of
a particular receptor. To circumvent the issue of
changes that might take place during the development
of “classical” knockouts, we are currently developing
an inducible knockout strategy (Stark et al. 1998). How-
ever, it is worth remembering that the inducible strat-
egy remains fundamentally different from the acute ad-
ministration of an antagonist, since this technique
blocks mRNA production rather than protein function.
Depending on the half-life of the protein of interest, it
will take varying amounts of time before the protein is
removed. For example, in the case of the 5-HT1B recep-

tor which has a half-life of eight days (Pinto and Batta-
glia 1994), it will take at least one month to lower recep-
tor levels by more than 10-fold. Inducible knockouts
are, therefore, more comparable to chronic than acute
antagonist treatment.

We have also developed a new strategy that will al-
lows to re-express in KO mice, the missing protein in
only a subset of regions where that protein is normally
found. Such “rescue” mice should allow us to deter-
mine which neural circuits are involved in specific ef-
fects of 5-HT receptors.

Although the inducible and rescue mice will soon be
available for investigation, the classic knockout remains
worthy of study because it mimics the situation found
in genetic disorders where the mutation is present
throughout development. For example, 5-HT1B or
5-HT1A knockout or heterozygous mice may be models
of vulnerability to psychiatric disorders such as im-
pulse control or anxiety disorders. These models will
also enable us to characterize some of the molecular ad-
aptations that may underlie altered emotional states.
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