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Although nicotine is acknowledged as the major 
pharmacologically active chemical in tobacco that accounts 
for its continued use, there is a need for much further 
research. It is necessary to systematically compare the 
complex pharmacological actions of pure nicotine with those 
of tobacco, using different routes of administration and, 
therefore, rates of absorption. Tobacco smoking produces 
several important behavioral and central nervous system 
effects. More research is needed to determine the role of 

nicotine versus the many other substances present in 
tobacco smoke. Although nicotine is the primary 
pharmacological agent in tobacco that maintains its use, 
other chemicals and their biological mechanisms involved in 
tobacco smoking need to be studied further. 
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Much is known about the complex issues involved in
tobacco smoking reinforcement. Taste, smell, sensory
stimulation of the respiratory tract by the smoke, the
psychological set, and the social setting of the smoker
are all significant. There is little doubt that nicotine is
essential for maintaining tobacco smoking behavior
(Larson et al. 1961; Ejrup 1965; Larson and Silvette 1968,
1971; U.S. Surgeon General’s Report 1988; Balfour 1984;
Adlkofer and Thurau 1985; Ney and Gale 1989; Rand
and Thurau 1988; Clarke et al. 1995; Domino 1995a).
With each passing year more data are available that de-
scribe the complex pharmacology of this intriguing al-
kaloid. One only needs to peruse the abstracts of the So-

ciety for Research on Nicotine and Tobacco meeting in
March 1997 and the Society of Neuroscience meeting in
October 1997 to appreciate the impressive amount of
current nicotinic cholinergic research.

As our knowledge of nicotine pharmacology becomes
increasingly more complex, most drug abuse research-
ers use Occum’s razor to explain why a large number of
different substances, including nicotine, are reinforcing
and, hence, potentially addicting. Most drugs of abuse,
including nicotine, release brain dopamine in laboratory
rats. Inasmuch as dopamine is the primary neurotrans-
mitter involved in pleasure and reward, the principle of
scientific parsimony permits one to conclude that tobacco
smoking and dependence are due to nicotine, the re-
sulting dopaminergic neuronal activity and dopamine
release (Andersson et al. 1981; Lichtensteiger et al. 1982;
Clarke and Kumar 1983a,b; Schwartz et al. 1984; Clarke
and Pert 1985; Clarke et al. 1985a, 1988; Grenhoff et al.
1986; Imperato et al. 1986; Grenhoff and Svensson 1988,
1989; Mereu et al. 1987; Clarke 1990; Svensson et al. 1990;
Corrigall 1991; Corrigall et al. 1992; Hakan et al. 1993;
Bauco and Wise 1994; Nisell et al. 1994, 1995, 1996, 1997).
Once the mechanism of nicotine-induced dopamine re-
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lease is well understood, future research directions be-
come individual and administrative choices based upon
the needs of society. The purpose of this review is to
summarize some of our knowledge and suggest several
future directions for nicotine and tobacco research.

 

A HISTORICAL PERSPECTIVE OF THE 
RELATIONSHIP OF NICOTINE

TO ACETYLCHOLINE

 

This has been reviewed briefly by Domino (1995b).
More than 83 years ago, Dale (1914) compared the ac-
tions of various synthetic and endogenous choline (Ch)
derivatives, including acetylcholine (ACh), with those
of the plant alkaloids muscarine and nicotine. The ef-
fects of muscarine were similar to some of the effects of
ACh and parasympathetic nerve stimulation. The ac-
tions of nicotine were similar to those of ACh after the
muscarinic antagonist atropine, as well as after sympa-
thetic nerve stimulation. Dale postulated that ACh was
an autonomic nervous system neurotransmitter, and
that it had dual actions, i.e., muscarinic and nicotinic.

Nicotine and ACh can exist in remarkably similar
molecular forms. ACh is a very flexible molecule com-
pared with nicotine; it can be easily configured to re-
semble nicotine. The pyridine nitrogen of nicotine is an
electronic donor similar to the keto oxygen of the acetyl
group of ACh. The positive charge of the quaternary ni-
trogen of the Ch group in ACh is similar to the positive
charge of the pyrrolidine nitrogen of nicotine, which
has been emphasized previously (Domino 1979). When
using computer graphic techniques, the two molecules
are superimposable. At the pH of blood, nicotine exists
in both charged and uncharged forms. The latter can
readily penetrate the blood-brain barrier, but ACh can-
not. Many years ago, tobacco companies began to add
ammonia-forming chemicals to tobacco cigarettes, us-
ing the basic concept of the Henderson-Hasselbalch
equation. With an alkaline pH, nicotine is more union-
ized and, therefore, better able to penetrate lipophilic
cellular membranes. Pankow et al. (1997) studied this
phenomenon in relationship to tobacco smoke particles
in which the volatility of conversion of nicotine to its
nonprotonated free-base form is facilitated at a basic pH.

A series of studies by Gause and Smaragdova (1938,
1939) and Gause (1941) almost 60 years ago suggested
that the mechanism of action of nicotine is related to
that of ACh. These investigators studied the toxicity of
the optical isomers of nicotine in a large number of in-
vertebrates and vertebrates. In many worms, fish, am-
phibia, reptiles, and birds, 

 

l

 

-nicotine is more toxic than

 

d

 

-nicotine. In lower forms such as protozoa, coelenter-
ata, platyhelminthes (turbellaria), nemertinea, and tro-
chelminthes (rotatoria), the toxicity of the two isomers
of nicotine is equal. Gause (1941) correlated their data

with those of Bacq (1935) in animals species that pre-
sumably used ACh as a neurotransmitter. The correla-
tion was so impressive that Gause proposed that an op-
tically active receptive substance for nicotine was
present in the nervous system of animals that utilized
ACh as a neurotransmitter. Hence, Gause in 1941 pro-
vided biologic evidence for the existence of a nicotinic
cholinergic receptor (nAChR).

 

BRAIN DISTRIBUTION OF NICOTINIC 
CHOLINERGIC RECEPTORS

 

Schwartz et al. (1982), Clarke and Pert (1984, 1985),
Clarke et al. (1985b), London et al. (1985), Schwartz and
Kellar (1985), and Schulz et al. (1991) described the au-
toradiographic distribution of nAChRs in rat brain us-
ing 

 

3

 

H-nicotine, 

 

3

 

H-ACh, and 

 

125

 

I-

 

a

 

-bungarotoxin bind-
ing. 

 

3

 

H-nicotine binds with high affinity. It is displaced
selectively by cold 

 

l

 

-nicotine and ACh and less so by

 

d

 

-nicotine. The brain distribution of 

 

3

 

H-nicotine and 

 

3

 

H-
ACh is quite different from that of 

 

125

 

I-

 

a

 

-bungarotoxin,
indicating major subtypes of nAChRs. Both 

 

3

 

H-nicotine
and 

 

3

 

H-ACh binding is highest in the interpeduncular
nucleus, most thalamic nuclei, superior colliculus, me-
dial habenula, presubiculum, layers I, III, and IV of the
cerebral cortex, substantia nigra pars compacta, and the
ventral tegmental area. Deutch et al. (1987) and Swan-
son et al. (1987) used monoclonal antibodies generated
against purified AChR from Torpedo electric organ, or
chicken and rat brain, to determine the immunohis-
tochemical localization of nAChR in rat and mouse
brain. Again, the pattern of brain distribution is quite
different from that of 

 

a

 

-bungarotoxin binding but simi-
lar to that reported for nicotine binding.

 

MULTIPLE BRAIN NICOTINE BINDING SITES

 

In the 1970s and 1980s, researchers characterized rodent
brain binding sites for 

 

3

 

H-nicotine. The number of nico-
tine binding sites found varied considerably. Schleifer
and Eldefrawi (1974), Abood et al. (1980), and Martin
and Aceto (1981) found only one binding site. However,
Yoshida and Imura (1979), Romano and Goldstein
(1980), Sershen et al. (1981), and Marks and Collins
(1982) reported one or two sites, depending upon the
temperature and duration of incubation. On the other
hand, Sloan et al. (1983, 1984, 1985a,b,c, 1987, 1988)
found that 

 

3

 

H-nicotine binding was very complex. Mul-
tiple sties, including a very high, high, low, and very
low affinity, as well as a positive cooperativity site,
were described. Sloan et al. also pointed out that nico-
tine ligands that differed in their binding characteristics
had different pharmacological effects, data consistent
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with the presence of multiple nicotinic receptors. Fur-
thermore, as mentioned above, the brain distribution of
the binding sites for nicotine differed considerably from
those for 

 

a

 

-bungarotoxin as described by Marks and Col-
lins (1982), Clarke et al. (1985b), and London et al. (1985).
It should be noted that Abood et al. (1980) provided ev-
idence for a noncholinergic nicotine binding site. Sloan
et al. (1987) pointed out that a number of endogenous
brain chemicals, especially niacinamide in a concentra-
tion of only 10

 

2

 

10

 

 mol/L, produced a 17% increase in

 

3

 

H-nicotine binding by an action at an up-regulatory
site. One must conclude that there are multiple binding
sites for nicotine in the brain; we need to know far more
details of the mechanisms involved.

 

SUBTYPES OF NICOTINIC 
CHOLINERGIC RECEPTORS

 

A great deal of research provided insights into the bio-
logical functions of ACh (Mesulam 1994; Reiner and
Fibiger 1994) and its muscarinic and nicotinic cholin-
ergic receptor families (Changeaux et al. 1992; Chini et
al. 1992; Gerzanich et al. 1993; Lena and Changeaux
1993; Lindstrom et al. 1990; Leutje and Patrick 1991; Sar-
gent 1993; Seguela et al 1993; Sieghart 1992; Steinbach
1990; Tarroni et al. 1992). Muscarinic cholinergic recep-
tors (mAChR) are members of a superfamily of G pro-
tein–coupled receptors (Ehlert et al. 1994; Richelson
1994). Nicotinic cholinergic receptors (nAChRs) are
members of a superfamily of ligand-gated ion channels
with significant molecular diversity (Popot et al. 1976;
Conti-Tranconi et al. 1982; Wada et al. 1989; Deneris et
al. 1991; Sargent 1993; Arneri  et al. 1995; Bannon et al.
1995). There are now five known muscarinic receptor
subtypes (M

 

1

 

, M

 

2

 

, M

 

3

 

, M

 

4

 

, M

 

5

 

) that involve, as second
messengers, intracellular decreases in cAMP, increases
in PI turnover, or increases in K

 

1

 

 conductance. The

ć

 

number of known nicotinic cholinergic receptor sub-
types is increasing. The primary composition of nico-
tinic cholinergic (Numa et al. 1983) and muscarinic cho-
linergic (Kubo et al. 1986) receptors were determined by
using molecular biological techniques that provided
amino acid sequences from cloned DNA. Analysis of
hydrophobicity plots of their amino acid sequences
suggested that nicotinic receptors traverse the plasma
membrane four times and muscarinic receptors seven
times.

The specific genes for each subunit of nAChRs all en-
code proteins that are similar to the skeletal muscle 

 

a

 

1
subunit in that they contain cysteine 128 and 142. There
are now eight 

 

a

 

 neuronal genes (

 

a

 

2 through 

 

a

 

8). In ad-
dition, three neuronal 

 

b

 

 genes (

 

b

 

2, 

 

b

 

3, 

 

b

 

4) have been
described. The subunit mRNA distribution for each
varies considerably throughout the nervous system of
different species of animals. The nAChRs are divided
into three subfamilies as noted in Table 1.

Although the functional role of nAChRs in synaptic
transmission in peripheral autonomic ganglia and at
the skeletal neuromuscular junction is well docu-
mented, their role in synaptic transmission in the brain
is far less documented (Sargent 1993; Zhang et al. 1993;
McGehee et al. 1995). Especially interesting is electro-
physiological evidence that even in synapses mediated
by transmitters other than ACh, there may be presynap-
tic choline acetyltransferase expression and pre- and
postsynaptic nAChRs (Brown et al. 1983; Schwartz et al.
1984; Edwards et al. 1992). Wonnacott et al. (1989) and
Wonnacott (1997) summarized the evidence for nAChR
presynaptically modulating the release of various neu-
rotransmitters. Vidal (1994) suggested that nicotine po-
tentiation of glutamatergic synapses may explain its ef-
fects on cognition. McGehee et al. (1995) provided
electrophysiological evidence that nicotine in nmol/L
concentrations via nAChRs enhances cholinergic and
glutamatergic synaptic transmission by increased pre-
synaptic [Ca

 

11

 

]

 

i

 

.

 

Table 1.

 

Subfamilies of Nicotinic Cholinergic Receptors

 

Property Skeletal Muscle Autonomic Ganglionic Central Nervous System

 

Subunits

 

a

 

1, 

 

b

 

1, 

 

«

 

, 

 

d

 

, 

 

g a

 

3, 

 

a

 

4, 

 

a

 

5, 

 

a

 

7, 

 

b

 

2, 

 

b

 

4

 

a

 

2, 

 

a

 

3, 

 

a

 

4, 

 

a

 

5, 

 

a

 

6, 

 

a

 

7, 

 

a

 

8, 

 

a

 

9, 

 

b

 

2,

 

b

 

3, 

 

b

 

4
Examples of subunit 

composition as hetero- or 
homo-oligomers

(

 

a

 

1)

 

2

 

B1

 

«

 

(adult)
(

 

a

 

1)

 

2

 

B1

 

dg

 

(fetal)
(

 

a

 

4)

 

x

 

7)

 

y

 

, (

 

a

 

4)

 

x

 

(

 

b

 

2)

 

y

 

(

 

a

 

4)

 

2

 

(

 

b

 

2)

 

3

 

, (

 

a

 

3)

 

x

 

(

 

b

 

2)

 

y

 

(

 

a

 

7)

 

5

 

, (

 

a

 

8)

 

5

 

, (

 

a

 

9)

 

5

 

Effector int.Na

 

1

 

/K

 

1

 

/Ca

 

11

 

(cond. ps large)
int.Na

 

1

 

/K

 

1

 

/Ca

 

11

 

 (cond.
small to large)

int.Na

 

1

 

/K

 

1

 

/Ca

 

11

 

 (cond. small
to large, high Ca

 

2

 

1

 

 perm.)
Selective [

 

3

 

H]- or [

 

125

 

]-

 

a

 

-bungarotoxin
[

 

3

 

H] cysteine
[

 

3

 

H] methylcarbamyl-choline
[

 

3

 

H] nicotine

[

 

3

 

H]- or [

 

125

 

]-

 

a-bungarotoxin
[3H] k-bungarotoxin

Channel blockers decamethonium 
gallamine

chlorisondomine
hexamethonium
mecamylamine

chlorisondomine
mecamylamine

Cond. 5 conductance; perm. 5 permeability; ps 5 picosiemens; x,y 5 variable numbers not identified.
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OCCUPANCY, RATE, EFFICACY, AND
ALLOSTERY RECEPTOR THEORIES—ACTIONS 

OF NICOTINE ON ITS RECEPTORS

There are a number of theories regarding drug receptor
interactions (Pratt and Taylor 1990; Kenakin 1993). Oc-
cupation theory and its extensions include efficacy and
allostery models. Classical occupation theory and its ex-
tensions involve the mathematical process by which drug
molecules bind to the number of their receptors. Rate
theory involves the rate of onset and offset of drug mol-
ecules binding to their receptor (Paton 1961). As described
by Paton, “Instead of thinking of a receptor as, say, a
note on an organ, such that as long as it is depressed a
note is emitted, we think of it like a piano, one burst of
sound and then silence.” Rate theory now has few pro-
ponents and many feel it has been disproven. Occupancy
theory, as developed by Clark (1933), efficacy theory as
a modification of occupancy theory Stephenson (1956),
and its physical or molecular basis in the allostery model
developed by Karlin (1967), Thron (1973), and Lena and
Changeaux (1993) are currently the dominant drug-recep-
tor models. Receptor inactivation or desensitization mod-
els include those above as well as those described by Katz
and Thesleff (1957) and Gosselin (1977). There is a press-
ing need to explain in mathematical terms the interactions
of nicotine with its many different receptors in a unified
theory of nicotine receptor activation and deactivation.

TOBACCO AND NICOTINE AS 
REINFORCERS IN HUMANS

Not only is the amount of nicotine crucial in the rein-
forcing effects of tobacco, but also its rate of absorption
into the systemic circulation. Smokers given nicotine
slowly with a 14-h IV infusion (Benowitz and Jacob
1990), or via a transdermal nicotine patch (Foulds et al.
1992), continue to smoke. The additional nicotine pro-
duces a substantially greater increase in venous plasma
nicotine levels more than the volunteers usually would
obtain after smoking ad lib. Furthermore, the subjects
smoke less. These findings confirm earlier reports by
Johnston (1942) and Lucchesi et al. (1967). The latter
found that an IV nicotine infusion reduced the number
of cigarettes smoked by only 22%. Recently, a mouth
nicotine inhaler has been used as an adjunct to smoking
cessation (Leischow et al. 1996). The smoking absti-
nence rate following its use was 45% compared to 14%
(p , .0005) for a placebo inhaler at week 6, but by
month 12 the rate was 11% and 5%, respectively (p 5
.14). It should be noted that although the type of oral
nicotine inhaler used delivers reasonable peak plasma
levels of nicotine (Molander et al. 1996), it does not de-
liver nicotine to the lungs but only to the mouth and
throat (Bergstrom et al. 1995).

In 1997, Li et al. and Winchell et al. from the Food
and Drug Center for Drug Evaluation and Research re-
ported on all phase III clinical trials related to nicotine
products in new drug applications in the United States.
A total of 1,953 tobacco smokers were examined for quit
rates between nicotine replacement and placebo treated
groups. The 4-week quit rates were 37.2% for the nico-
tine treated versus 22.1% for the placebo group (p ,
.0001). After 12 months, the quit rates were 14.9% for
the nicotine and 11.1% for the placebo group (p , .05).
Nicotine underdosing was not associated with poorer
smoking cessation rates among the nicotine treatment
groups with different levels of salivary cotinine. Al-
though the differences between placebo and nicotine replace-
ment therapy groups were statistically significant, the clini-
cal success of nicotine replacement is clearly unimpressive.
At 4 weeks, about one of three smokers quit and after 1
year of continuous nicotine therapy only 15 of 100
smokers quit, whereas 85 ex-smokers are back to smok-
ing. Why is nicotine replacement therapy so poorly ef-
fective if tobacco smokers are addicted to nicotine? The
quantitative data on the rate of nicotine absorption by
Armitage et al. (1975) and the pharmacokinetic consid-
erations by Benowitz (1990) following smoking provide
clues. Russell et al. (1995) proposed that tobacco smok-
ers regulate their pattern of puffing and inhalation of
cigarette smoke to obtain an increase (which they called
a boost) of about 10 ng/ml venous blood within a pe-
riod of less than 10 min. The blood nicotine boost is de-
fined as the trough concentration before to the peak
concentration just after smoking a tobacco cigarette.
The nicotine arterial/venous concentration ratio is
about 8–10 just after smoking a cigarette (Armitage et
al. 1975; Henningfield et al. 1993). Therefore, the arterial
nicotine boost delivered to the human brain must be in
the order of 80–100 ng/ml, with a decline to about 25
ng/ml within 10 min. Arterial/venous equilibration of
nicotine is incomplete 10 min after finishing smoking a
cigarette (Henningfield et al. 1993).

It is of interest that nicotine in gums, skin patches,
and inhalers is not pleasurable to most people, in con-
trast to its use in tobacco. Nicotine skin patches are
readily available over the counter in the United States
without a prescription and are not abused, probably be-
cause they do not provide the short duration nicotine
boosts that tobacco smoking does. Is this the only rea-
son most people do not find pure nicotine-containing
preparations reinforcing? It should be noted that an ex-
tensive series of studies by Jasinski, Henningfield, and
colleagues found that IV pulses or smoked nicotine
were as pleasurable as cocaine, morphine, or heroin in
polydrug abusers (Henningfield et al. 1981, 1983, 1985,
1987; Henningfield and Jasinski 1988; Jasinski and Hen-
ningfield 1988; Jasinski et al. 1984; Keenan et al. 1995).
Such studies must be repeated in normal nonsmokers
and smokers, although significant ethical issues need to
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be settled first. At present, pure nicotine abuse is almost
nonexistent compared with tobacco smoking. Why?

Another major area of research concern is the impact
of individual differences and the role of psychopathol-
ogy in human smoking behavior. Gilbert (1995) stressed
the issue of individual differences in relationship to a
large variety of psychological and biological factors. Po-
merleau (1997) reviewed the extensive evidence that
psychological/psychiatric co-morbidity with tobacco
smoking is present in patients with anxiety disorders, at-
tention deficit-hyperactivity disorders, bulimia/binge-
ing, and mental depression. Nicotine and other chemi-
cals in tobacco smoke are probably used by such patients
as self-medication. Especially pertinent are the studies
by Freedman and colleagues, using the positive audi-
tory evoked potential of about 50 ms as an electrophysi-
ological marker for schizophrenia. This positive poten-
tial (P1, also known as P50) has been used as an index of
processing auditory input in schizophrenic patients (see
Adler et al. 1982, 1992; Freedman et al. 1983, 1987, 1991;
Waldo et al. 1991). The testing paradigm they used is re-
lated to prepulse inhibition of the startle response. To-
bacco smoking/nicotine transiently reversed this deficit
in sensory gating in schizophrenic patients and some of
their mentally normal relatives. Freedman et al. (1983)
demonstrated that the P1 gating mechanism involves a
nicotinic cholinergic mechanism via an a-bungarotoxin
sensitive receptor. It is of interest that Knott (1989) sum-
marized data that the P1 potential is enhanced in men-
tally normal volunteers by tobacco smoking.

The mechanism by which nicotine in combination
with haloperidol is a treatment of Tourette’s syndrome
(Silver and Sanberg 1993) needs further study, as does
the relationship of nicotine to Parkinson’s and Alzhei-
mer’s diseases (Smith and Giacobini 1992).

NICOTINE ALONE IS REINFORCING
IN ANIMALS

There is no question that nicotine is a positive reinforcer
in animals. The first report by Deneau and Inoki (1967)
indicated that monkeys self-administer nicotine. Per-
haps because nicotine is not as reinforcing in animals as
cocaine there was early disagreement among investiga-
tors as to how reinforcing nicotine really was. The early
literature is well summarized in the U.S. Surgeon Gen-
eral’s report in 1988. Since then, the evidence that nico-
tine alone is a positive reinforcer in animals is overwhelm-
ing. In addition, animals readily discriminate nicotine
in appropriate behavioral paradigms (Stolerman 1989;
Rosecrans et al. 1995). Strain differences are important,
indicating genetic factors must be considered.

Genetic factors in rats are impressive (Shoaib et al.
1997). For example, Corrigall and Coen (1989) studied
Long-Evans rats that show robust self-administration of

nicotine, whereas Dworkin et al. (1993) studied Wistar
rats that do not. Rosecrans (1971) showed that female
rats selected for activity differences differ in their behav-
ioral and 5-hydroxytryptamine brain effects. Individual
differences are marked (Rosecrans 1995). Furthermore,
nicotine stimulus discrimination varies markedly among
different rat strains (Rosecrans et al. 1995). Although
genetic factors are very important in nicotine reinforce-
ment, the conditions in which rats were previously
trained to drugs like cocaine (Tessari et al. 1995) are an
indication of important conditioning, etc., factors (Shoaib
et al. 1997).

IS TOBACCO SMOKING ADDICTION DUE TO 
NICOTINE ALONE?

A hypothesis championed by proponents of the tobacco
industry is that the effects of tobacco cigarette smoking
are more complex than those due to nicotine alone. Per-
haps an appropriate nicotine boost, as well as the possi-
ble effects of the thousand or more other chemicals in to-
bacco smoke, is involved in maintaining tobacco
smoking behavior. It is not the purpose of this communi-
cation to review the chemistry of tobacco and its smoke
(see Schmeltz and Hoffman 1976). Jarvik’s review (1979)
includes a short list of substances in the gas and tar phase
of cigarette smoke, which is a cesspool of chemicals that
may have some biological effects. What substances in to-
bacco smoke besides nicotine have behavioral, nervous
system, or other actions throughout the body? Almost
everybody agrees with the widely held belief that the
primary pharmacologically active agent in tobacco is nic-
otine. However, other chemicals in tobacco smoke con-
tribute to its smell, taste, and complex biological effects.
It is essential to compare the effects of pure nicotine with
those of tobacco smoke on various biological and psy-
chological measures. As described above, one must keep
in mind the route and speed by which tobacco versus
nicotine is taken into the body. The various tobacco/nic-
otine delivery systems are compared in Table 2.

The rate of absorption and dose of nicotine are cru-
cial variables that determine its pharmacological ac-
tions. There are rapid but variable rates of desensitiza-
tion of various nicotinic cholinergic receptors, which
lead to differential tachyphylaxis and tolerance. It
makes little pharmacological sense to compare the ef-
fects of the inhalation of tobacco smoke with those pro-
duced by a nicotine patch. One must compare the ef-
fects of tobacco and pure nicotine via the same route of
administration and same rate of absorption. Skin ab-
sorption of both is the slowest, oral gum slow, snuff
and nasal spray a little faster, and pipe smoking and
mouth inhalation intermediate. Cigarette smoking and
aerosol inhalation produce the fastest absorption of ac-
tive compounds. Nicotine aerosol inhalers developed
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years ago (Herxheimer et al. 1967; Domino and Lutz 1973)
were very irritating and not practical in delivering pure
nicotine via lung absorption. With new propellants and
the technologies used in current asthmatic inhalers, this
problem should be overcome. One can also use pure
nicotine injections SC, IM, and IV. The rates of absorp-
tion from these routes are intermediate to very fast. It is
not very practical, but tobacco has been used by local
skin application and rectal administration. Inasmuch as
ulcerative colitis is a disease primarily of nonsmokers,
and transdermal nicotine patches are helpful, Green et
al. (1977) developed a nicotine polyacrylic carbomer ad-
ministered by enema to treat patients with active dis-
ease. In the case of ulcerative colitis, it appears that the
beneficial effects of tobacco smoking are those due to
nicotine itself and not other chemicals in tobacco.

Dramatic visual evidence from the human positron
emission tomography (PET) imaging study by Fowler
et al. (1996) shows that there is more to tobacco smoke
than nicotine. It was known for many years that some-
thing in tobacco smoke inhibits monoamine oxidase
(MAO; Essman 1977; Oreland et al. 1981; Norman et al.
1982, 1987; Yu and Boulton 1987; Boulton et al. 1988;
Berlin et al. 1995). There are two types of MAO in-
volved in the oxidative deamination of biogenic amine
chemical modulators and neurotransmitters. Fowler et
al. (1996) showed more reduced brain MAOB than
MAOA binding in tobacco smokers compared with non-
smokers. Nonsmokers were pretreated with nonradio-
active deprenyl to inhibit their brain MAOB as a control.
In neither the deprenyl-treated nonsmokers nor the to-
bacco smokers was 11C-deprenyl taken up as well by
the brain. Nicotine itself is not an MAO inhibitor. Some-
thing else besides nicotine in tobacco smoke produces
MAO inhibition. Is the percentage of inhibition in vivo
sufficient for a functional decrease in MAO activity?
The time has come for more research on this issue.

TOLERANCE, SENSITIZATION, AND 
WITHDRAWAL TO NICOTINE AND 

TOBACCO SMOKING

Nicotine is well known to produce rapid (tachyphy-
laxis) and slower tolerance. Any person who smoked a

first tobacco cigarette knows the initial effects of smok-
ing may be very unpleasant with subsequent tolerance.
Interestingly, even regular tobacco smokers lose some
tolerance overnight to the side effects of the first ciga-
rette smoked in the morning. There are very important
differential genetic components to nicotine-induced tol-
erance and nAChR changes as described by Marks et al.
(1986) in four different inbred mouse strains. In contrast
to C57BL, BALB, and DBA animals, C3H mice did not
develop tolerance to nicotine effects on Y-maze activity,
rearing, and body temperature. However, C3H mice
showed tolerance to nicotine on acoustic startle. None
of the four strains developed tolerance to nicotine ef-
fects on respiration. Only the BALB mice showed toler-
ance to nicotine-induced bradycardia. All four strains
had increased [3H]nicotine binding in six different brain
regions with slight strain differences in a[125I]bungaro-
toxin binding to chronic nicotine. The significance of
the paradox of increased nAChR upregulation with
chronic nicotine has been reviewed by Wonnacott (1990).

Damsma et al. (1989) found no tolerance to nicotine-
induced dopamine release in nucleus accumbens. Such
animal studies have important implications for the ef-
fects of nicotine and tobacco smoking in humans and
may help explain some of the individual differences
and perplexities of tobacco smoking. Detailed studies
on the tolerance development to different pharmaco-
logical effects of nicotine are needed, similar to those
described by Porchet et al. (1987, 1988) on heart rate.

One of the simplest behavioral effects of nicotine in
rodents is alteration of locomotor activity. In mice, nico-
tine produces either an increase or decrease of activity,
depending upon the dose and the genetic strain. Very
marked pharmacogenetic differences to nicotine are ob-
served in pure bred mouse strains (Bovet et al. 1969;
Collins et al. 1988). When nicotine is given in a single
dose to most strains of naive adult rats, locomotor activ-
ity is reduced. However, when nicotine is given daily,
tolerance occurs to its depressant effects both on loco-
motor activity as well as in various operant paradigms
(Morrison 1967; Morrison and Stephenson 1972; Dom-
ino and Lutz 1973; Stolerman et al. 1973; Rosecrans et al.
1989; Belwell and Balfour 1992; Villaneuva et al. 1992).
On repeated administration, nicotine induced rat be-
havioral stimulation becomes very apparent (Morrison
and Stephenson 1972; Clarke and Kumar 1983a,b; Ksir
et al. 1985, 1987; Hakan and Ksir 1988, 1991; Johnson
1995). In addition, the sensitivity of rat frontal cortical
neurons is increased by chronic nicotine (Abdulla et al.
1995). The same daily nicotine treatment schedule does
not cause dramatic behavioral sensitization in hemipar-
kinsonian monkeys, suggesting important species or
brain pathological differences (Domino et al. 1998). Hence,
the need for more research. Does nicotine-induced be-
havioral sensitization, so easily observed in rats, occur
in primates, and especially in humans?

Table 2. Tobacco/Nicotine Delivery Systems

Tobacco Nicotine Absorption

Mouth (oral snuff) Gum Slow
Skin contact Patch Slowest
Nasal snuff Nasal spray Intermediate
Enema Enema Intermediate
Cigar, pipe Mouth inhaler Intermediate
Cigarette Aerosol inhaler Fast
Not applicable Injection, SC, IM, IV Intermediate to fastest
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The 1988 U.S. Surgeon General’s Report summarized
the evidence that abrupt withdrawal from nicotine/to-
bacco resulted in an abstinence syndrome. There is a
significant interrelationship between conditioned and
primary reinforcement in the maintenance of tobacco
smoking (Rose and Levin 1991), but also in the extent of
its withdrawal signs and symptoms. Hildebrand et al.
(1997) used centrally and peripherally acting nicotinic
antagonists to precipitate an abstinence syndrome in
rats given nicotine, 10.27 mg/kg/day for 7 days. They
concluded that central as well as peripheral nicotinic re-
ceptors contribute to the withdrawal syndrome. Ab-
dulla et al. (1996) found that chronic nicotine given to
rats produced regional brain increases in [3H]-nicotine
binding in some areas such as the frontal, entorhinal,
and dorsal hippocampus, but not in other areas such as
the posterior cingulate or ventral hippocampus. Nico-
tine clearly improved the rate of learning. These investi-
gators studied the relationship between upregulation of
nicotine binding sites and the cognitive enhancement
after acute or chronic nicotine. Nicotine, given only for
1 day 11 days earlier, increased the rate of learning, but
only marginally increased nicotinic receptor binding in
the entorhinal cortex and not in other brain areas. En-
torhinal and dorsal hippocampal nicotinic binding was
positively correlated with the rate of learning. Clearly,
much more research needs to be done on the relation-
ship of improvement in learning and the significance of
differential regional upregulation of both active and de-
sensitized nAChRs, and which ones. Lake et al. (1997)
reported in an abstract that in rats given a SC nicotine
infusion in a dose of 9 mg/kg/day for 7 days, abrupt
termination, injection of nicotine, the SC injection of
mecamylamine, dihydro-b-erythroidine, or cerebral in-
traventricular (IVT) hexamethonium, but not scopola-
mine, induce an abstinence syndrome. The animal data
indicate that nicotinic cholinergic antagonists such as
mecamylamine precipitate a withdrawal syndrome in
nicotine-dependent rats. However, mecamylamine, in
doses up to 20 mg orally, does not precipitate a with-
drawal syndrome in chronic tobacco smokers (Eissen-
berg et al. 1996). Perhaps much larger doses of mecamy-
lamine are needed, but this will result in significant side
effects due to mecamylamine alone. Obviously, much
more research is needed to pursue this important issue.

NEED FOR APPROPRIATE COMPARISON 
STUDIES WITH NICOTINE ALONE AND 

VARIOUS TOBACCO PRODUCTS

Russell et al. (1995) concluded that a similar venous
blood nicotine boost occurs within 10 min with both
smokeless oral tobacco snuff and nicotine spray, but not
with nicotine gum or patches. The best method of du-
plicating the puff by puff inhalation of tobacco smoke is

the use of a nicotine aerosol. Until a nonirritating nico-
tine aerosol is developed, which can deliver nicotine to
the lungs, the inhalation method of administering nico-
tine is not an option.

Pure nicotine solutions have been given to humans
via various routes of injection including IV, IM, or SC.
However, such methods of administration require an
investigational new drug application to the U.S. Food
and Drug Administration and, therefore, are of limited
availability. Furthermore, institutional human use com-
mittees are far more concerned with protocols that deal
with nicotine by injection than by patch, gum, or nasal
spray. Obviously, computer programmed intravenous
injections of nicotine that mimic the blood concentra-
tions of nicotine obtained from inhaling tobacco smoke
are of special interest. If an average tobacco smoker ob-
tains about 10 total 0.1 mg/puff doses of nicotine in
about 5 min, appropriate computer programming of
small, very rapid bolus IV injections could mimic ciga-
rette smoking. To do so, the injection system must de-
liver an IV nicotine bolus within 2 s. Corrigall and Coen
(1989) used a pneumatic pump which delivered a 1-s
pulse of nicotine each time a rat pressed an operant bar.
A modified system using a microdialysis pump is being
developed by Matta and colleagues from the Minneap-
olis Medical Research Foundation (personal communi-
cation 1997). Such a technique is still highly experimen-
tal and not a U.S. FDA approved method for humans.
Therefore, from a practical point of view, at the present
time intranasal administration of nicotine seems to be
the only reasonable approach to compare pure nicotine
with tobacco smoke inhalation. Fortunately, the FDA in
1996 approved a nicotine nasal spray device. This de-
vice delivers 0.5 mg/spray. Nicotine can easily be ad-
ministered in doses of 1–2 mg total with one to two
sprays into each nostril. Obviously, the next studies to
be done are to compare the effects of intranasal nicotine
with the results obtained with tobacco smoking.

FUTURE DIRECTIONS

We humans usually have free choice to decide on the
harm/benefit of most behaviors that directly affect us.
Much is known of the harmful effects of tobacco smok-
ing, but a lot less about its benefits, which many in our
society feel are none. Jarvik (1991) described some of
the beneficial effects of nicotine. From a scientific point
of view, society must do far more in providing support
for studying the latter. Developing safer tobacco smok-
ing devices is the job of the tobacco industry, but devel-
oping substitutes for the positive reinforcing effects of
tobacco smoking is the job of motivated scientists and
the pharmaceutical industry. The tobacco problem will
not go away with a prohibition on smoking. Current
agreements and negotiations among private, state, and
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federal representatives and the tobacco industry are
heading in the direction of allowing the tobacco indus-
try to survive but be far more regulated. One can con-
clude that the 21st century will have many people well
informed of the hazards of tobacco smoking who will
continue to smoke. Hence, safer tobacco products, as
well as much more scientific knowledge on why people
smoke, need to be obtained through research. Agree-
ments between legislative bodies and the tobacco in-
dustry should include funds to support such research,
or more taxes on tobacco products should be desig-
nated for research.
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