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Atypical Neuroleptics Have Low Affinity for 
Dopamine D2 Receptors or Are Selective 
for D 4 Receptors 
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This review examines the possible receptor basis of the 
atypical action of those atypical antipsychotic drugs that 
elicit low levels of Parkinsonism. Such an examination 
requires consistent and accurate dissociation constants for 
the antipsyclwtic drugs at the relevant dopamine and 
serotonin receptors. It has long been known, however, that 
the dissociation constant of a given antipsychotic drug at 
the dopamine D2 receptor varies between laboratories. 
Although such variation depends on several factors, it has 
recently been recognized that the radioligand used to 
measure the competition between the antipsychotic drug 
and the radioligand is an important variable. The present 
review summarizes information on this radioligand 
dependence. In general, a radioligand of low solubility in 
the membrane (i.e., low tissue:buffer partition) results in a 
low value for the antipsychotic dissociation constant when 
the drug competes with the radioligand. Hence, by first 
obtaining the antipsychotic dissociation constants using 
different radioligands of different solubility in the 
membrane, one can then extrapolate the data to low or 
"zero" ligand solubility. The extrapolated value represents 
the radioligand-independent dissociation constant of the 
antipsychotic. These values are here given for dopamine D2 

and D4 receptors, as well as for serotonin 5-HT2A receptors. 
These values, rnoreover, agree with the dissociation constant 
directly obtained with the radioactive antipsychotic itself. 
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For example, clozapine revealed a radioligand-independent 
value of 1.6 nM at the dopamine D4 receptor, agreeing with 
the value directly measured with [3H]-clozapine at D4. 

However, because clozapine competes with endogenous 
dopamine, the in vivo concentration of clozapine (to occupy 
dopamine D4 receptors) can be derived to be about 13 nM, 
agreeing with the value of 12 to 20 nM in the plasma water 
or spinal fluid observed in treated patients. The atypical 
neuroleptics remoxipride, clozapine, perlapine, seroquel, 
and melperone had low affinity for the dopamine D2 

receptor (radioligand-independent dissociation constants of 
30 to 90 nM). Such low affinity makes these latter five 
drugs readily displaceable by high levels of endogenous 
dopamine in the caudate or putamen. Most typical 
neuroleptics have radioligand-independent values of 0.3 to 
5 nM at dopamine D2 receptors, making them more 
resistant to displacement by endogenous dopamine. Finally, 
a relation was found between the neuroleptic doses for rat 
catalepsy and the D2:D4 ratio of the radioligand­
independent K values for these two receptors. Thus, the 
atypical neuroleptics appear to fall into two groups, those 
that have a low affinity for dopamine D2 receptors and those 
that are selective for dopamine D4 receptors. © 1997 
American College of Neuropsychopharmacology 
[Neuropsychopharmacology 16:93-110, 1997] 
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RECEPTOR HYPOTHESES FOR ATYPICAL 
NEUROLEPTIC ACTION 

The blockade of dopamine D2 receptors alleviates psy­
chosis but also produces Parkinsonism (Seeman et al. 
1974, 1975; Creese et al. 1976; Seeman 1992a, 1995a). An­
tipsychotic drugs (neuroleptics) that elicit few or none 
of the extrapyramidal signs of Parkinsonism are re­
ferred to as atypical antipsychotic drugs (Meltzer and 
Nash 1991). What is the receptor basis for this atypical 
action of these particular neuroleptics? There are sev­
eral current views: 

1. Some atypical neuroleptics may have a low affinity 
for dopamine D2 receptors and may thus be readily 
displaced by high endogenous concentrations of 
dopamine in the caudate or putamen. 

2. Atypical neuroleptics may block both dopamine D2 

receptors and muscarinic receptors. 
3. Atypical neuroleptics may have a balanced block of 

dopamine D2 receptors and serotonin2A (5-HT2A) re­
ceptors (Meltzer 1989, 1995; Leysen et al. 1994; Hut­
tunen 1995). 

4. Atypical neuroleptics may selectively block dopa­
mine D4 receptors. 

We examined these various hypotheses after first 
considering the values for the neuroleptic dissociation 
constants at the dopamine D2, D4, and 5-HT2A receptors. 

THE NEUROLEPTIC DISSOCIATION 
CONST ANT VARIES WITH THE TISSUE: 

BUFFER PARTITION OF THE RADIOLIGAND 

To derive the therapeutic receptor-blocking concentra­
tions of neuroleptics and to assess the different hypoth­
eses for atypical neuroleptic action, it is essential to use 
neuroleptic dissociation constants that have been mea­
sured with the minimum experimental artifacts. 

For example, it has been found that the dissociation 
constant of a neuroleptic (e.g. [3H]-spiperone) can range 
from 30 pM up to 1,600 pM as the final concentration of 
tissue is increased (Seeman et al. 1984). Currently, how­
ever, the final concentrations of tissue in most laborato­
ries is kept very low to minimize tissue dependence. 

Although many other factors may also determine the 
dissociation constant of an antipsychotic drug at various 
receptors, the literature on this topic is not extensive. 
The pH, for example, determines not only the surface 
activities (Seeman and Bialy 1963) and the membrane: 
buffer partition coefficients of neuroleptics (Seeman 
1966a, 1966b; Seeman and Weinstein 1966; Seeman and 
Kwant 1969), but also the dissociation constant of the 
neuroleptic at the dopamine D2 receptor (e.g., sulpiride; 
Presland and Strange 1991). The surface charge of the 
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membrane also determines the membrane:buffer parti­
tion coefficient of neuroleptics (Kwant and Seeman 1969), 
as does the membrane lipid composition (Kwant and 
Seeman 1971). Many of these physicochemical factors, 
including temperature, that affect the partition of the 
neuroleptic in the membrane have been previously re­
viewed (Seeman 1972). As for the role of physicochemi­
cal factors on the dissociation constant of agonists and 
antagonists, the sodium and magnesium ion concentra­
tions determine the proportion of the dopamine D2 re­
ceptors that are in the high-affinity state (Grigoriadis 
and Seeman 1985; Watanabe et al. 1985). Sodium also is 
essential for the high-affinity binding of benzamide 
neuroleptics to dopamine receptors (Jarvie et al. 1987). 

Nevertheless, despite standard laboratory experi­
mental conditions internationally (e.g., pH of 7.4 and 
physiological concentrations of Na+, Mg++, and other 
ions), it has long been known that the dissociation con­
stant of a particular neuroleptic may vary considerably 
between laboratories, particularly when different radio­
ligands are used. For example, the dissociation constant 
for clozapine at the dopamine D2 receptor is approxi­
mately 150 nM (range 70-400 nM), when using [3H]­
spiperone as a radioligand (Seeman 1992a). However, 
when [3H]-raclopride is used as the radioligand, the dis­
sociation constant for clozapine at D2 is between 35 and 
60 nM (Malmberg et al. 1993). 

Recently, therefore, this dependence of the neurolep­
tic dissociation constant on the radioligand was studied 
in more detail (Seeman and Van Tol 1995; Seeman 
1995b). It was found that the neuroleptic dissociation 
constant depended on the tissue:buffer partition coeffi­
cient of the radioligand. A similar finding has recently 
been made by Durcan et al. (1995). 

For example, clozapine at the D2 receptor revealed a 
dissociation constant of 390 nM with [3H]-nemonapride, 
186 nM with [3H]-spiperone, and 83 nM with [3H]-raclo­
pride. Haloperidol also had a dissociation constant of 
9.6 nM at dopamine D2 receptors using [3H]-nem­
onapride, 2.7 nM using [3H]-spiperone, and 0.67 nM us­
ing [3H]-raclopride. These neuroleptic dissociation con­
stants were related to the tissue:buffer partition coef­
ficients of the radioligands, as shown in Figures 1 and 2. 

THE RADIOLIGAND-INDEPENDENT 
DISSOCIATION CONSTANT 

It is possible to eliminate the dependence of the neuro­
leptic dislocation constant on the radioligand and thereby 
obtain the dissociation constant of the neuroleptic in the 
absence of any competing radioligand. This may be 
done by extrapolating the relation shown (Figure 2) 
down to either unity or zero partition, yielding an inter­
cept. This intercept represents the dissociation constant 
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Figure 1. Top, a representative experiment showing that the haloperidol dissociation constant (or inhibition constant) was 

high (7.3 nM) when competing versus PH]-nemonapride, but lower when competing versus PH]-spiperone (2.8 nM) and 

even lower when using [3H]-raclopride (1.2 nM). These K values were derived by the Cheng-Prusoff (1973) equation, using 

the appropriate KJ value for each ['HJ-ligand (adapted from Seeman and Van Tol 1995). (The Hill coefficient for the competi­

tion of haloperidol with each radioligand was not significantly different from unity). Bottom, the tissue:buffer partition for 

each radioligand was defined as the nonspecific binding that occurs at 1 nM ligand. The tissue was postmortem human brain 

caudate nucleus. Nonspecific binding was defined as that obtained in the presence of 1 µM ( + )butaclamol. (Adapted from 

Seeman and Van Tol 1995.) 
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Figure 2. Using data of the sort shown in Figure 1, the dissociation constant (K value) for a neuroleptic at a given receptor 
depends on the tissue:buffer partition of the fH]-ligand. Extrapolating down to the intercept yields the radioligand-indepen­
dent dissociation constant. This value represents the dissociation constant for the neuroleptic in the absence of any compet­
ing [3H]-ligand and is therefore referred to as the radioligand-independent dissociation constant. The [3H]-ligands for the 
serotonin 5-HT2A receptor (rat cerebral cortex) were: ['H]-ketanserin (*K) and [3H]-spiperone (*Sc). The [3H]-ligands for the 
human cloned D2 receptor were [3H]-nemonapride (*N) (formerly emonapride or YM-09151-2), [3H]-spiperone (*S) or [3H]­
raclopride (*R). The data using either Dzshort (Bunzow et al. 1988; Owolabi et al. 1994) or D:ztong (O'Dowd ct al. 1990; in COS-7 
cells) yielded identical K values for each neuroleptic. The [3H]-ligands for the human cloned D4 receptor (Van Toi et al. 1991) 
were [3H]-nemonapride, [3H]-spiperone, or [3H]-Sandoz GLC756 (*G) (Markstein et al., 1996). The data using either D4.2 or 
D4.7 (Van Toi et al. 1992) yielded identical dissociation constants for each neuroleptic. The number of independent measure­
ments is given beside each point. The tissue:buffer partition coefficients for the PHI-ligands were for the postmortem human 
caudate nucleus (see Figure 1), except that for *Kand *Sc, which were based on the rat cerebral cortex. Using partition coeffi­
cients based on the [3H]-ligands partitioning between tissue culture cells and buffer yielded essentially similar results for the 
radioligand-independent dissociation constants (Seeman and Van Tol 1995). Note that the dissociation constantsK,1 using [3H]-
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chlorpromazine, [3H]-clozaprine, and [3H]-haloperidol were 
identical to the radioligand-independent dissociation con­
stants for chlorpromazine, clozapine, and haloperidol, respec­
tively. The Kd values of these [3H]-neuroleptics are shown at a 
low partition (zero) because the [3H]-ligand does not compete 
with any other compound for binding to the receptor. 

of the neuroleptic in the absence of any competing radi­
oligand. Thus, a low partition or a partition of "zero" 
indicates that the neuroleptic would be competing 
against a water-soluble radioligand with low or negligi­
ble partition and that would be readily displaced by the 
neuroleptic. 

Several examples of this approach are shown in Fig­
ures 2A-2C. Thus, the extrapolated dissociation con­
stant (or radioligand-independent dissociation con-
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stant) for clozapine at dopamine 0 4 receptors is 1.6 nM, 
in agreement with the value of 1.5 nM as directly mea­
sured with [3H]-clozapine at the dopamine 0 4 receptor 
(see Figure 2A). This value, moreover, agrees with that 
found by Kusumi et al. (1995a, 1995b) for a dopamine 
Orlike binding site labeled by [3H]-clozapine in the rat 
frontal cortex. 

It is important to note this identity between the radi­
oligand-independent dissociation constant (Figure 2) 
and the dissociation constant (Kd) as determined di­
rectly using the [3H]-neuroleptic. This identity holds for 
[3H]-chlorpromazine, [3H]-clozapine, and [3H]-haloperi­
dol, as shown in Figure 2A, as well as for [3H]-sertindole 
(Figure 2c). The Kd values of these [3H]-neuroleptics are 
shown at a low partition (zero) because the [3H]-ligand 
does not compete with any other compound for binding 
to the receptor. 

The extrapolated radioligand-independent dissocia­
tion constant is not a new parameter in any way. It 
merely is the dissociation constant of the competing 
nonradioactive compound that would be obtained if 
very high volumes of incubation were used (Seeman 
and Van Tol 1995; Seeman 1995b). For example, when 
the volume of incubation was increased from the cus­
tomary 1.5 ml to a larger volume of 8 ml, the radioli­
gand-dependence of the competing nonradioactive 
drug was considerably reduced but not eliminated 
(Seeman and Van Tol 1995; Seeman 1995b). The depen­
dence of the dissociation constant on the partition coef­
ficient of the radioligand does not arise from depletion 
of the radioligand, because no depletion occurs (See­
man and Van Tol 1995; Seeman 1995b). In fact, when 
very high volumes of 10 ml are used, the radioligand 
dependence may disappear, and the dissociation con­
stant of the radioactive drug appears to agree with the 
dissociation constant of the competing nonradioactive 
drug (Malmberg et al. 1996). The radioligand depen­
dence is not a result of inadequate time of equilibration, 
as identical results were obtained when the standard in­
cubation period of 2 hours was extended to either 4 or 6 
hours (Seeman and Van Tol 1995; Seeman 19956). 

A summary of the radioligand-independent dissoci­
ation constants for 17 neuroleptics at the dopamine 0 2 

receptor (cloned), the dopamine 0 4 receptor (cloned), 
and the serotonin 5-HT2A (rat cortex) receptor is given 
in Table 1. 

DRUG SELECTIVITY IS LIGAND-DEPENDENT 

An examination of the data in Figure 2 indicates that 
the receptor selectivity of a drug depends on the radio­
ligands used. For example, the data in Figure 2B for 
olanzapine show that olanzapine has a radioligand­
independent dissociation constant of 2 ± 0.4 nM at the 
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Table 1. Radioligand-Independent Dissociation Constants 

D2:S-HT2A D2:D4 
D2 04 5-HT2A Ratio Ratio 

Chlorpromazine 0.66 ± 0.05(12) 1.15 ± 0.04(9) 3.5 ± 0.06(9) 0.19 0.58 
Clozapine 44 ± 8(27) 1.6 ± 0.4(96) 11 ± 3.5(9) 4.00 28.00 
Fluphenazine 0.32 ± 0.03(7) 50 ± 10(11) 80 ± 19(6) 0.004 0.0064 
Haloperidol 0.35 ± 0.05(18) 0.84 ± 0.05(54) 25 ± 8(5) 0.014 0.42 
Isoclozapine 6 ± 0.06(15) 5.8 ± 0.08(19) 1.5 ± 0.05(9) 4.20 1.03 
Loxapine 5.2 ± 0.03(15) 7.8 ± 1.5(25) 10.2 ± 1.2(5) 0.51 0.67 
Melperone 88 ± 30(7) 410 ± 70(19) 280 ± 90(7) 0.31 0.22 
Molindone 6 ± 3(9) 2,400 ± 800(11) 5,800 ± 1,300(6) 0.001 0.0025 
Olanzapine 3.7 ± 0.6(12) 2 ± 0.4(22) 5.8 ± 0.7(14) 0.64 1.85 
Perlapine 60 ± 10(8) 30 ± 10(10) 30 ± 12(6) 2.00 2.00 
Ra clop ride 0.64 ± 0.12(13) 620 ± 100( 40) 5,400 ± 1,700(4) 0.00012 0.001 
Remoxipride 30 ± 25(8) 2,800 ± 400(9) 3,100 ± 400(4) 0.01 0.011 
Risperidone 0.3 ± 0.1 (19) 0.25 ± 0.1(17) 0.14 ± 0.1(5) 2.14 1.2 
Seroquel 78 ± 28(13) 3,000 ± 300(14) 2,500 ± 600(5) 0.03 0.026 
Sertindole 0.95 ± 0.4(22) 0.85 ± 0.2(18) 0.3 ± 0.06(8) 3.1 1.12 
Thioridazine 0.4 ± 0.12(12) 1.5 ± 0.5(16) 60 ± 15(6) 0.007 0.27 
Trifluperazine 0.96 ± 0.2(11) 44 ± 6(11) 135 ± 50(6) 0.007 0.022 

In nM ± SE (11 experiments in duplicate). 

dopamine D4 receptor. This value is statistically signifi­
cantly lower than that of 3.7 ± 0.6 nM for the dopamine 
D2 receptor and lower than that of 5.8 ± 0.7 nM for the 
5-HT2A receptor. However, if only the data for olanza­
pine using [3H]-spiperone were considered, then olan­
zapine would be viewed as preferring the 5-HT2A recep­
tor (see Figure 2B). Selectivity is here defined as a 
statistically significant preference of the neuroleptics 
for one receptor over another, as examined by their ra­
dioligand-independent dissociation constants (Table 1). 
The receptor selectivities of haloperidol and isocloza­
pine (Figure 2A) also depend on the ligand considered. 

NEUROLEPTICS WITH HIGH AND LOW 
AFFINITY FOR THE DOPAMINE D2 RECEPTOR 

The data in Table 1 indicate that the neuroleptic values 
for the radioligand-independent dissociation constants 
fall into two groups, those that have high values at 
dopamine D2 receptors (between 30 and 90 nM) and 
those that have low values (between 0.3 and 5 nM). 

CLOZAPINE THERAPEUTIC CONCENTRATION, 
AS DERIVED FROM THE RADIOLIGAND­

INDEPENDENT DISSOCIATION CONSTANT AT 
THE DOPAMINE D4 RECEPTOR 

One important example of the usefulness of the value 
for the radioligand-independent dissociation constant 
is that it may be used to derive the therapeutic concen-

tration of a neuroleptic. For example, although the data 
in Figure 2 show that clozapine has a radioligand-inde­
pendent dissociation constant of 1.6 nM at the dopa­
mine D4 receptor, clozapine in vivo must compete with 
endogenous dopamine in the synapse, estimated to be 
of the order of 10 nM (Kawagoe et al. 1992). Hence, the 
in vivo concentration of clozapine for 50% occupation 
of dopamine D4 receptors may be derived from the 
commonly used Cheng-Prusoff equation (Cheng and 
Prusoff 1973; Munson and Rodbard 1988). Thus, the in 
vivo concentration of clozapine for 50% occupation of 
dopamine D4 receptors would be approximately equal 
to K X [1 + DI 6.2 nM]), or 4.2 nM, where K is the radio­
ligand-independent dissociation constant of 1.6 nM for 
clozapine (Figure 2), D is the synaptic concentration of 
the order of 10 nM, and where 6.2 nM is the dissociation 
constant of dopamine at the high-affinity state of the 
dopamine D4 receptor (Table 2 in Asghari et al. 1994). 

We previously used the value of 50 nM for the syn­
aptic concentration of dopamine (Seeman and Van Tol 
1995). This value of 50 nM, however, was from Ross 
(1991), who estimated it by an indirect method of in 
vivo competition of tritiated dopamine agonists and 
comparing the results with in vitro competition by 
dopamine. The value of 10 nM, however, was obtained 
more directly by Kawagoe et al. (1992) and is used, 
therefore, in this present review. This value for 10 nM, 
moreover, refers to the dopamine concentration that is 
time-averaged for a frequency of 5 Hz over a distance of 
2 microns. In addition, although we previously used the 
value of 16 nM for the high-affinity state of dopamine at 
the dopamine D4 receptor (Seeman and Van Tol 1995), 
the more recent value of 6.2 nM is based on 18 experi-
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ments for the different variants of 0 4 (Table 2 in As­
ghari et al. 1994). 

This approximate synaptic concentration of 4.2 nM 
clozapine, however, only applies for the blockade of 
50% of the dopamine 0 4 receptors. Hence, the synaptic 
concentration of clozapine required to block 75°/4, of the 
dopamine 0 4 receptors will be three times higher, or 
about 13 nM. [Actually, the clinical requirement to 
block 75% of the dopamine receptors to achieve anti­
psychotic action applies to the occupation of dopamine 
02 receptors (Farde et al. 1992). The percent occupancy 
of dopamine 0 4 receptors required for the clinical con­
trol of psychotic symptoms is not yet known.] 

This predicted in vivo concentration of 13 nM cloza­
pine for 75°/c, occupation of dopamine 0 4 receptors com­
pares to an observed value in the plasma water or spinal 
fluid of treated patients of between 12 and 20 nM (Ole­
sen et al. 1995; see References and analysis in Seeman 
1992a), using 1.85% as the proportion of free (unbound) 
clozapine in the plasma (Table 1 in Seeman 1992a). 

These considerations (as well as those below in Par­
kinson's disease) do not prove but only suggest that 
clozapine might be clinically operative at the dopamine 
0 4 receptor, despite the fact that clozapine is known to 
bind to many receptors. At the very least, these calcula­
tions indicate that dopamine 0 4 receptors are at least 
75% occupied by clozapine under therapeutic conditions. 

THERAPEUTIC CONCENTRATIONS OF OTHER 
NEUROLEPTICS 

Using the same considerations for haloperidol, it can be 
shown that the haloperidol therapeutic concentration 
required for 75% blockade of dopamine Dz receptors in 
vivo will be approximately 2 to 3 nM, using the radioli­
gand-independent dissociation constant of 0.35 nM 
(Table 1; Figure 2). This predicted value of 2 to 3 nM 
haloperidol agrees with the observed value in the spi­
nal fluid (or plasma water) of between 1 and 3 nM (Ta­
ble 1 in Seeman 1992a). Approximately 75% to 80% of 
the brain dopamine 0 2 receptors are occupied (Wolkin 
et al. 1989; Nyberg et al. 1995) by 1 nM haloperidol in 
the plasma water, using 8.5% as the average proportion 
of free (i.e., unbound) haloperidol in the plasma (See­
man 1992a). 

Furthermore, using this same type of calculation for 
the antipsychotics listed in Table 1, it may be shown 
that the molarity for 75% blockade of dopamine 0 2 re­
ceptors (and allowing for competition with endogenous 
dopamine) results in a final concentration of antipsy­
chotic drug that matches that found in patients (i.e., the 
concentration in the plasma water or in the spinal 
fluid). For example, using this calculation, remoxipride 
yields a molarity of 235 nM; the value observed in pa-
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tients is 200 nM (Seeman 1992a). Molindone yields a 
value of 47 nM; the value observed in patients is 50 nM 
(Seeman 1992a). Chlorpromazine yields a value of 5.2 
nM; that found in patients is 6 nM (Seeman 1992a). 
Raclopride yields a value of 5 nM; that found in pa­
tients is 3 nM (Seeman 1992a). Thioridazine yields a 
value of 3.1 nM; that found in patients is 3 nM (Seeman 
1992a). In effect, therefore, these radioligand-indepen­
dent dissociation constants at the dopamine 0 2 recep­
tor, when corrected for competition with endogenous 
dopamine and with allowance made for 75% occupa­
tion of dopamine 0 2 receptors, closely match the free 
neuroleptic concentrations in the patient's plasma wa­
ter, as previously shown using other radioligands (See­
man 1992a; Seeman et al. 1976). 

DERIVING THE CLOZAPINE THERAPEUTIC 
CONCENTRATION IN L-DOPA PSYCHOSIS IN 

PARKINSON'S DISEASE 

Parkinson's disease provides a second important exam­
ple of the usefulness of radioligand-independent disso­
ciation constants. In excellent agreement with the find­
ings of Meltzer et al. (1995), who measured plasma 
clozapine in Parkinson's patients who had become psy­
chotic on L-DOP A, the clozapine concentration (in the 
plasma water or spinal fluid) for 75% blockade of 
dopamine 0 4 receptors can be derived to be approxi­
mately 1.7 nM (using the previous equation, where Dis 
known to be less than 5% of normal). This value is in 
agreement with the value of approximately 1.2 nM 
found by Meltzer et al. (1995), after allowance is made 
for clozapine binding to plasma proteins (see above). 

CLOZAPINE OCCUPATION OF DOPAMINE 
RECEPTORS, AS SEEN BY POSITRON 

TOMOGRAPHY 

A third important example of the principle shown in 
Figure 2 is the resolution of different positron tomogra­
phy findings in the proportion of dopamine D2 recep­
tors occupied by clozapine in humans. The data in Fig­
ure 2, using [1H]-raclopride and [3H]-spiperone, may 
explain why clozapine occupies 48% of the dopamine 
0 2 receptors in patients when measured with [11C]­
raclopride (Parde et al. 1992, 1994; Nordstrom et al. 
1994), but between 0% and 22% when measured with 
[1 8F]-methylspiperone (Karbe et al. 1991) or [18F]-fluoro­
ethylspiperone (Louwerens et al. 1993). By graphing the 
percentage of 0 2 receptors occupied by clozapine ver­
sus the tissue:buffer partition of the radioligand, it is 
possible to extrapolate to "zero" partition, as is done 
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with the in vitro data (Figure 2). Thus, the percentage of 
0 2 receptors occupied by clozapine is extrapolated to 
approximately 85%, if using a radioligand of "zero" 
partition (e.g., radiodopamine). Under clinical condi­
tions, therefore, in the absence of any radioligand, cloz­
apine occupies high levels of 0 2 receptors in neurolep­
tic-treated patients (Seeman and Kapur, submitted). 
The antipsychotic action of clozapine may stem, there­
fore, from its occupation of high levels of 0 2, 0 4, or 
5-HT2A receptors. 

RECEPTOR BASES FOR ATYPICAL 
NEUROLEPTIC ACTION 

The different receptor hypotheses for the clinically 
atypical action of the atypical neuroleptics may now be 
examined using the values for the radioligand-indepen­
dent dissociation constants. 

Neuroleptics Displaceable by Endogenous 
Dopamine 

The first group are those atypical neuroleptics that have 
low affinity for dopamine 0 2 receptors and thus may be 
readily displaced by high endogenous concentrations of 
dopamine in the caudate or putamen, as depicted in 
Figure 3. This group includes remoxipride, clozapine, 
perlapine, seroquel, and melperone, all of which have 
very high values (30-90 nM; Table 1 ) for their radioli­
gand-independent dissociation constants. This is in 
contrast to most typical neuroleptics that have radioli­
gand-independent dissociation constants of 0.3 to 5 nM 
(Table 1). Molindone is borderline with a radioligand­
independent dissociation constant of 6 nM (Table 1). Of 
the 12 atypical neuroleptics listed by Roth et al. (1995), 
nine have dissociation constants (using [3H]-spiperone) 
that are between 45 and 1,584 nM, suggesting that these 
compounds would be readily displaced at the dopa­
mine 0 2 receptor by high local concentrations of endoge­
nous dopamine in the striatum. Of the 11 typical neuro­
leptics tested by Roth et al. (1995), 10 have dissociation 
constants (using [3H]-spiperone) that are between 0.06 
and 8 nM, suggesting that these compounds would be 
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less readily displaced at the dopamine 0 2 receptor by 
high local concentrations of endogenous dopamine in 
the striatum. 

It should first be noted that the therapeutic concen­
trations (in spinal fluid or plasma water) of remoxipride 
and molindone are identical to the concentrations that 
block 75% of the dopamine 0 2 receptors (Seeman 1992a, 
1995b, 1995c), as noted. Thus, remoxipride and molin­
done are not exceptions to the general rule that thera­
peutic levels of neuroleptics occupy dopamine 0 2 re­
ceptors (with the exception of clozapine, which prefers 
dopamine 0 4 receptors; Seeman 1992a, 1995b). 

However, the high radioligand-independent dissoci­
ation constants of 30 to 90 nM for these atypical drugs 
indicates that they are loosely attached to the dopamine 
0 2 receptors and may, therefore, be readily displaced 
by endogenous dopamine. The principle of displace­
ment of a neuroleptic by endogenous dopamine has 
been shown for [3H]-raclopride (Seeman et al. 1989a; 
Young et al. 1991), [11C]-raclopride (Dewey et al. 
1992, 1993a, 1993b; Innis et al. 1992; Wong et al. 1995), 
[ 3H]-spiperone and [3H]-methylspiperone (De Jesus et 
al. 1986; Seeman et al. 1989a; Young et al. 1991), [18F]­
N-methylspiperone (Logan et al. 1991; Dewey et al. 
1991), and [1231]-iodobenzamide (Innis et al. 1992; 
Laruelle et al. 1995a, 1995b). 

Neuroleptics with high dissociation constants have 
low tissue:buffer partition values and are more exten­
sively displaced by endogenous dopamine than neuro­
leptics with low dissociation constants that have high 
tissue:buffer partition values (Seeman et al. 1989a). The 
five atypical neuroleptics remoxipride, clozapine, per­
lapine, seroquel, and melperone would be expected to 
be readily displaced by endogenous dopamine, al­
though no experimental work has been reported for 
these particular five neuroleptics. 

It is reasonable to expect, moreover, variations in the 
synaptic dopamine concentration in different brain re­
gions, based on the different concentrations of homo­
vanillic acid (HV A) found in these various regions. For 
example, the basal concentration of HV A in the rat stri­
a tum is four times higher than that in the limbic region 
(Anden and Stock 1973) and 20 times higher than that 
in the prefrontal cortex (Bowers 1984). 

Figure 3. Dopamine displaces antipsy­
chotic drugs that bind with low affinity to 
dopamine D2 receptors in the striatum 
(where the dopamine concentration is 
high), but not in the limbic regions of the 
brain where the dopamine content is low. 
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Hence, neuroleptics with high dissociation constants 
would occupy more dopamine receptors in brain re­
gions that have a low dopamine output (limbic regions, 
hypothalamus, and prefrontal cortex), but would oc­
cupy fewer dopamine receptors in regions that have 
high dopamine output (caudate/putamen) as a result 
of the neuroleptic competition with endogenous 
dopamine (Figure 3). Hence, the fraction of dopamine 
receptors that are blocked in the caudate/putamen 
would be less than the fraction blocked in the nonstri­
atal regions, with corresponding fewer extrapyramidal 
signs than found in the typical neuroleptics that have low 
radioligand-independent dissociation constants. These 
considerations may explain why seroquel (450 mg) occu­
pies only 27% to 44% of the 0 2 receptors in patients (us­
ing [11C]-raclopride, Gefvert et al. 1995) and why cloza­
pine occupies only 48% of the dopamine 0 2 receptors in 
patients (using [1 1C]-raclopride, Parde et al. 1992, 1994; 
Nordstrom 1994), than the typical neuroleptics that oc­
cupy 70% to 80% of the dopamine 0 2 receptors (Parde 
et al. 1992, 1994; Nordstrom 1994). 

Combined Block of Dopamine D2 Receptors and 
Muscarinic Receptors 

A second small group of two atypical neuroleptics, 
clozapine and thioridazine, strongly block both dopa­
mine 0 2 and muscarinic receptors. Clozapine, for exam­
ple, is of the order of 20- to SO-fold more potent in 
blocking muscarinic acetylcholine receptors than block­
ing dopamine 0 2 receptors (see references in Seeman 
1990), making clozapine an extremely potent anticholin­
ergic drug. Clozapine blocks muscarinic receptors be­
tween 1.5 (Snyder et al. 1974) and 36 nM (Clineschmidt et 
al. 1979). Because anticholinergic drugs have an anti-Par­
kinson action, it might appear that the low values of 1.5 to 
36 nM may readily account for the atypical action of cloza­
pine. However, this simple explanation is probably not 
correct, because isoclozapine is equally anticholinergic (K 
of 11 nM; Rupard et al. 1989), yet elicits catalepsy in ani­
mals at low doses, in contrast to clozapine. Moreover, it 
has been argued that the combination of antagonists for 
dopamine (i.e., neuroleptic) and acetylcholine (i.e., benz­
tropine) is not as effective in minimizing Parkinsonism as 
clozapine itself (Sayers et al. 1975; Kane et al. 1988). 

Thioridazine also blocks muscarinic receptors at 
about the identical concentrations that it blocks dopamine 
0 2 receptors (see references in Seeman 1990). Thus, the 
relatively low level of Parkinsonism caused by thio­
ridazine may stem from its anticholinergic action. 

Balanced Block of Dopamine D 2 Receptors and 
5-HT2A Receptors 

A third mechanism that may account for the clinically 
atypical action of atypical neuroleptics is that these 
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drugs may have a balanced block of 0 2 and 5-HT2A re­
ceptors (Meltzer 1989, 1995; Leysen et al. 1994; Hut­
tunen 1995). 

The blockade of serotonin receptors increases the re­
lease of dopamine, as measured indirectly by the fall in 
[1 1C]-raclopride binding to D2 receptors (Smith et al. 
1994; Dewey et al. 1995; Pehek 1995; see additional ref­
erences on dopamine-serotonin interactions in Meltzer 
and Nash 1991). In tum, therefore, the increased release 
of endogenous dopamine displaces some of the neuro­
leptic from the dopamine 0 2 receptors, thereby alleviat­
ing to some extent the Parkinsonism caused by the 
dopamine 0 2 receptor blockade. 

This mechanism (of enhancing dopamine release) may 
explain the modest alleviation of neuroleptic-induced 
catalepsy (in rats) by ritanserin, a serotonin antagonist 
(Bligh-Glover et al. 1995). This alleviation only occurs, 
however, if the catalepsy is submaximum (Bligh-Glover 
et al. 1995), but not if the catalepsy is maximum, as pro­
duced by a relatively high dose of haloperidol (Waden­
berg 1992; Jaskiw et al. 1994). 

Ritanserin has been reported to alleviate neuroleptic­
induced Parkinsonism and akathisia in patients (Ber­
sani et al. 1990; Miller et al. 1992). However, ritanserin 
does not alleviate haloperidol-induced dystonia in 
monkeys, unlike clozapine, which is very effective in 
reversing this extrapyramidal syndrome (Casey 1991, 
1993, 1995a, 1995b). 

Clozapine, the most atypical neuroleptic, also is po­
tent at many other receptors, including 5-HT2c (Leysen 
1990; Kuoppamaki et al. 1993), 5-HT5, and 5-HT6 recep­
tors (Roth et al. 1994), and alpha1-adrenoceptors (Le­
jeune et al. 1994), but not potent at 5-HT3 receptors 
(Hoyer et al. 1989). It is possible, therefore, that such 
other receptor sites contribute to the atypical action of 
clozapine. 

Overall, however, there is mixed evidence support­
ing the concept of a balanced block of 0 2 and 5-HT zA re­
ceptors to account for the low level or absence of Par­
kinsonism by clozapine and other atypical neuroleptics 
(Seeman 1992b). 

To investigate this important 0 2 / 5-HT2A block hy­
pothesis further, the above radioligand-independent dis­
sociation constants (Table 1) may be used for these two 
receptors. These values at the 5-HT2A receptor are approx­
imately the same as those reported by others for the 
neuroleptic dissociation constants at this receptor, using 
[ 3H]-ketanserin (Leysen et al. 1982; Wander et al. 1987). 

In principle, the ratio of the neuroleptic radioligand­
independent dissociation constants for these two recep­
tors should be related to the dose that elicits either Par­
kinsonism in patients or catalepsy in rats. Such doses 
vary considerably, depending on how the Parkinsonism 
or the catalepsy are measured. To test the D2:5-HT2A hy­
pothesis, therefore the catalepsy doses as obtained in a 
single laboratory would be more meaningful. Figure 4 
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Figure 4. Top, published doses for neuroleptic-induced catalepsy (in rats) graphed versus the ratio of the neuroleptic radioli­
gand-independent dissociation constants (from Table 1) for the dopamine Dz and 5-HT2A receptors. Thus, the horizontal axis 
indicates the neuroleptic selectivity for 5-HT2A relative to that for the dopamine Dz receptor. Data for the four neuroleptics 
having low affinity for the dopamine D2 receptors (remoxipride, perlapine, seroquel, and melperone) that have high radioli­
gand-independent dissociation constants were omitted because these neuroleptics are atypical by virtue of being displaced 
by endogenous dopamine. Although clozapine and isoclozapine have identical D2:5-HT2A ratios, the catalepsy dose for clo­
zapine is in excess of 100 mg/kg (arrow) The references for the catalepsy doses are: chlorpromazine (CPZ) (Janssen et al. 1965; 
Stille et al. 1965b; Dlabac et al. 1975; Hunziker et al. 1981; Dubinsky et al. 1982; Gustafsson and Christensson 1990; Hirose et 
al. 1990; Usuda et al. 1981; Moore et al. 1992); clozapine (Burki et al. 1977; Moore et al. 1992); fluphenazine (Janssen et al. 
1965); haloperidol (Halo.) (Stille et al. 1965b; Burki et al. 1977; Usuda et al. 1981; Dubinsky et al. 1982; Gustafsson and Chris­
tensson 1990; Hirose et al. 1990; Hogberg et al. 1990; Megens et al. 1992; Moore et al. 1992); isoclozapine (Stille et al. 1965a; 
Schmutz 1973); isoloxapine (Schmutz and Eichenberger 1992); loxapine (Lox.) (Stille et al. 1965b; Burki et al. 1977); molin­
done (Molin.) (Moore et al. 1992; R. Corbett, unpublished); olanzapine (Moore et al. 1992); raclopride (Rado.) (R. Corbett, 
unpublished); risperidone (Risper.) (Megens et al. 1992; Moore et al. 1992); sertindole (Sert.) (Arnt et al. 1994); thioridazine 
(Thior.) (Janssen et al. 1965; Burki et al. 1977; Hirose et al. 1990); trifluperazine (Janssen et al. 1965). Thioridazine is drawn dif­
ferently (dotted lines) because it is a very potent anticholinergic drug; its anticataleptic action, therefore, may be attributed to 
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Figure 5. Top, neuroleptic doses for eliciting catalepsy in 50°/4, of the rat graphed versus the ratio of the neuroleptic radioli­
gand-independent dissociation constants for the dopamine Di receptor and the serotonin 5-HT2A receptors, as in Figure 4, except 
that the doses are all from one laboratory (Corbett et al. 1995). As in Figure 4, data for the four neuroleptics who have low 
affinity for the dopamine D2 receptors (remoxipride, perlapine, seroquel, and melperone), which have high radioligand­
independent dissociation constants, were omitted, based on the concept that these neuroleptics are atypical by virtue of 
being displaced by endogneous dopamine. Vertical bars indicate SE. See legend to Figure 4 (top) for additional details and 
references. Bottom, same as in Figure 5 (top) except that the catalepsy doses (Corbett et al. 1995) are graphed versus the ratio 
of the neuroleptic radioligand-independent dissociation constants for the dopamine q and D4 receptors (from Table 1). 
Thus, the horizontal axis indicates the neuroleptic selectivity for the dopamine D4 receptor relative to that for the dopamine 
D2 receptor. 

its anticholinergic efficacy. Bottom, same as for the top part of the figure except that the published catalepsy doses are 
graphed versus the ratio of the neuroleptic radioligand-independent dissociation constants for the dopamine D2 and D4 

receptors (from Table 1). Thus, the horizontal axis indicates the neuroleptic selectivity for the dopamine Di receptor relative 
to that for the dopamine D2 receptor. 
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(top) attempts to relate the radioligand-independent 
dissociation constants for the D2:5-HT2A ratio with the rat 
catalepsy doses for various neuroleptics using the pub­
lished catalepsy doses from many laboratories wherein 
different criteria were used to measure catalepsy. 

Figure 5 (top) shows the same type of data, but using 
catalepsy doses from a single laboratory (Corbett et al. 
1995), where the same criteria were used to measure cat­
alepsy for all the neuroleptics tested. 

In examining Figures 4 (top) and 5 (top), it is impor­
tant to note that clozapine and isoclozapine have almost 
identical selectivity for the 5-HT2A receptor (compared 
to the dopamine 0 2 receptor). Nevertheless, isocloza­
pine elicits catalepsy at about 3 mg/kg, whereas cloza­
pine does not produce catalepsy at 100 mg/kg. 

Although there is no clear relation between rat cata­
lepsy and the D2:5-HT2A ratios of the radioligand-inde­
pendent dissociation constants (Figures 4 and 5), other 
studies have found a difference between typical and 
atypical neuroleptics in their relative occupancy of 
dopamine 0 2 and 5-HT2A receptors (Meltzer et al. 1989a, 
1989b; Matsubara et al. 1993; Stockmeier et al. 1993). 

Selective Block of Dopamine D4 Receptors 

A fourth possible mechanism for atypical neuroleptic 
action may be the selective blockade of dopamine 0 4 re­
ceptors. There is a relation between the neuroleptic 
doses for rat catalepsy and the 0 2:04 ratio of the radioli­
gand-independent dissociation constants. This is shown 
in Figures 4 (bottom) and 5 (bottom). 

An important feature of the data in Figure 4 is that 
clozapine and isoclozapine are considerably different in 
their values for the 0 2:04 ratio of radioligand-indepen­
dent dissociation constants, in good relation to their dif­
ferent cataleptic potencies. This stands in contrast to 
their identical values for the D2:5-HT2A ratios of radioli­
gand-independent dissociation constants, as noted. 

Roth et al. (1995) also have found that perlapine, 
olanzapine, and clozapine are selective for the dopa­
mine 0 4 receptor, compared to the dopamine 0 2 receptor. 

Although sertindole is only now beginning to be 
tested in large numbers of patients, it has been reported 
that it does not elicit Parkinsonism (Daniel et al. 1995; 
Wallin et al. 1995). The low level or absence of extrapy­
ramidal signs with sertindole might be related to its 
ability to block dopamine 0 2 and dopamine 0 4 recep­
tors equally well, as illustrated in Figure 2C and shown 
in Table 1). 

The clinical role of dopamine 0 4 receptors may be 
clarified when the new Drselective drugs (Kulagowski 
et al. 1996; TenBrink et al. 1996) are developed and 
tested on psychotic patients. The blockade of dopamine 
0 4 receptors by these Drselective drugs may or may 
not be associated with clinical antipsychotic action. 
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However, if such dopamine Drselective drugs do not 
turn out to be antipsychotic, they may possibly mitigate 
against the extrapyramidal side effects of dopamine 0 2 

antagonists by activating locomotion. Nafadotride, for 
example, a dopamine 0 3 receptor antagonist, activates 
locomotion in rats (Sautel et al. 1995). 

Furthermore, to test whether or not the occupation of 
dopamine 0 4 receptors is related to catalepsy, it will be 
helpful to have tritiated congeners of the new 0 4-selec­
tive compounds (Tallman 1994; Kulagowski et al. 1996; 
TenBrink et al. 1996) so that they may serve as radioli­
gands for the dopamine 0 4 receptors. 

However, because 0 4-selective radioligands have not 
hitherto been generally available, dopamine 0 4 recep­
tors have been measured indirectly. One method, for 
example, has been to use [3H]-nemonapride (formerly 
YM-9151-2 or emonapride) to detect 0 2, 0 3, and 0 4 re­
ceptors and to use [3H]-raclopride or [1 25I]epidepride to 
label 0 2 and 0 3 sites. Hence, the difference in densities 
between the sites labeled by [3H]-nemonapride and 
those labeled by [3H]-raclopride (or [1251]-epidepride) 
has been ascribed to Drlike receptors or binding sites 
(Seeman et al. 1993, 1995; Murray et al. 1995; Sumiyoshi 
et al. 1995; Schoots et al. 1995; Tarazi et al. 1995; Lahti et 
al. 1995, 1996a, 1996b). This procedure resulted in the 
detection of elevated 0 4-like sites in postmortem 
schizophrenia tissues (Seeman et al. 1993, 1995; Murray 
et al. 1995; Sumiyoshi et al. 1995). Although Reynolds 
and Mason (1995) did not detect elevated 0 4-like sites 
in schizophrenia tissues, they assumed that the specific 
activity of [1251]-epidepride fell with time; however, as 
outlined elsewhere (Seeman et al. 1995), the specific ac­
tivity of [1251]-epidepride remains constant because the 
molecule self-destructs upon decay. Further discussion 
of the 0 4-like binding sites in schizophrenia is given by 
Kerwin and Collier (1996). 

However, recent preliminary findings, with Drselec­
tive [3H]-ligands indicated little (Lahti et al. 1996b) or 
no detectable amounts of true 0 4 dopamine receptors in 
either human control or schizophrenia striata (Seeman 
et al. 1995). This means that the existence of the elevated 
0 4-like sites in schizophrenia (Seeman et al. 1993, 1995; 
Murray et al. 1995; Sumiyoshi et al. 1995), although not 
representing genuine 0 4 receptors, may actually repre­
sent altered features of 0 2 or Drlike receptors. It is 
known, for example, that the density of [3H]benzamide 
sites exceeds the density of [3H]-spiperone sites in both 
native tissues and in cloned dopamine 0 2 receptors 
(Niznik et al. 1985; Seeman et al. 1992), giving rise to the 
idea that dopamine 0 2 receptors may exist as either 
monomers or dimers (Seeman et al. 1992). Recent work 
on postmortem human tissues indicates that this is the 
case (G. Ng, S. George, P. Seeman, B. O'Dowd, in prepa­
ration). Moreover, in schizophrenia, the proportion of 
0 2 monomers and dimers may change so as to yield an 
apparent elevation of 0 4-like sites. An example of this 
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latter phenomenon is seen for cholinergic muscarinic 
receptors (Wreggett and Wells 1995). A change in the 
association of G proteins with the muscarinic receptor 
alters the relative densities of two muscarinic radioli­
gands. This change is associated with an apparent in­
crease in the difference between the two radioligand 
densities and reflects a change in the oligomeric state of 
the muscarinic receptors (Wreggett and Wells 1995). A 
similar situation may occur in the dopamine 0 2 recep­
tors in schizophrenia, because it is known that G regu­
lation in the schizophrenia postmortem tissues is abnor­
mal (Seeman et al. 1989b, 1993). 

If the dopamine 0 4 receptors do alleviate the catalep­
tic effects of neuroleptics, as suggested by the data in 
Figure 5, it will be important to determine the neuron 
pathways or interactions between the dopamine 0 2 and 
0 4 receptors. The low levels or absence of dopamine 0 4 

receptors in the striatum are matched by the low levels 
of 0 4 mRNA in the human caudate nucleus and the 
substantia nigra (Van Tol et al. 1991; Matsumoto et al. 
1995). Hence, the existence of Drcontaining cell bodies 
in the striatum is ruled out. [tis possible, therefore, that 
O4-containing neurons may extend from the cerebral 
cortex down to O 2-containing neurones in the striatum 
(Seeman 1992a). Much research remains to be done on the 
cell-cell or intracellular nature of the DrD4 interaction. 

Clozapine Stimulation of 5-HT1A Receptors 

An effective alleviation of neuroleptic-induced cata­
lepsy is produced by 8-OH-DPAT (8-hydroxy-2-dipro­
pylaminotetralin), a 5-HT1A agonist (Invernizzi et al. 
1988; Broekkamp et al. 1988; Hicks 1990; Wadenberg 
and Ahlenius 1991; Wadenberg 1992; Casey 1992; Neal­
Beliveau 1993). In fact, it has recently been found that 
clozapine does act as a partial agonist at the human 
cloned 5-HT 1.11. receptor (Newman-Tancredi et al. 1996). 
This may well be the basis for the anticataleptic or anti­
Parkinsonian action of clozapine. However, much re­
search remains to be done to confirm that this particular 
mechanism is shared by other neuroleptics that elicit lit­
tle Parkinsonism. 

In summary, the atypical neuroleptics appear to 
have either a low affinity for dopamine 0 2 receptors, or 
they appear to be moderately selective for dopamine 0 4 

receptors. 
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