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Ethyl-eicosapentaenoic acid (E-EPA) is an omega-3 fatty acid that has been used in a range of neuropsychiatric conditions with some

benefits. However, its mechanism of action is unknown. Here, we investigate its effects on in vivo brain metabolism in first-episode

psychosis (FEP). Proton magnetic resonance spectroscopy at 3 T was performed in the temporal lobes of 24 FEP patients before and

after 12 weeks of treatment in the context of a larger double-blind, placebo-controlled E-EPA augmentation study. Treatment group

effects for glutathione (F1,12¼ 6.1, p¼ 0.03), and a hemisphere-by-group interaction for glutamine/glutamate (F1,20¼ 4.4, p¼ 0.049)

were found. Glutathione increased bilaterally and glutamate/glutamine increased in the left hemisphere following E-EPA administration.

Improvement in negative symptoms correlated with metabolic brain changes, particularly glutathione (r¼�0.57). These results suggest

that E-EPA augmentation alters glutathione availability and modulates the glutamine/glutamate cycle in early psychosis, with some of the

metabolic brain changes being correlated with negative symptom improvement. Larger confirmatory studies of these postulated

metabolic brain effects of E-EPA are warranted.
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INTRODUCTION

Omega-3 fatty acids are essential for normal brain
development, synaptic plasticity, and function (Bazan,
2005; Bazan et al, 1997). Cell biological and molecular
studies suggest that omega-3 fatty acids modulate mem-
brane fluidity (Hashimoto et al, 1999), dopaminergic
(Piomelli, 1994) and serotonergic (Yao et al, 2004)
neurotransmission, and differentially alter gene expression
(Kitajka et al, 2002; Salvati et al, 2004). Furthermore,
preclinical studies suggest that omega-3 fatty acids have
neuroprotective properties (Lonergan et al, 2002; Lynch
et al, 2007; Martin et al, 2002). Animal and human studies
provide ample evidence that essential fatty acid deprivation

during pregnancy is associated with developmental and
behavioral abnormalities (Innis et al, 1999; Wainwright
et al, 1994a, b) that are ameliorated by essential fatty acid
supplementation (Helland et al, 2003; Wainwright et al,
1994a, b).

Decreased omega-3 fatty acid levels have been found in
blood and postmortem brain cell membranes in several
neuropsychiatric conditions (Schachter et al, 2005), in
particular schizophrenia (Berger et al, 2006; Fenton et al,
2000; McNamara et al, 2007), bipolar affective disorders
(Chiu et al, 2003; Hitzemann et al, 1984; Mahadik et al,
1996; Ranjekar et al, 2003), major depression (Frasure-
Smith et al, 2004; McNamara et al, 2006; Mischoulon and
Fava, 2000; Peet et al, 1998), and attention deficit
(hyperactivity) disorder (Burgess et al, 2000; Stevens et al,
1995).

Controlled clinical trials in established schizophrenia
indicate that either sole or augmentation therapy with
omega-3 fatty acids may be beneficial (Emsley et al, 2002;
Joy et al, 2006; Mellor et al, 1996; Peet et al, 2001), with
some conflicting results (Emsley et al, 2006; Fenton et al,
2001; Peet and Horrobin, 2002a, b). Furthermore, controlled
clinical trials in treatment-resistant depression (Nemets
et al, 2002; Peet and Horrobin, 2002a, b), bipolar depression
(Keck et al, 2006), bipolar affective disorder (Stoll et al,
1999), borderline personality disorder (Zanarini and
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Frankenburg, 2003), incarcerated young males (Gesch et al,
2002), and children with developmental coordination
disorders (Richardson and Montgomery, 2005) also suggest
that omega-3 fatty acids may modulate mood, impulsivity,
and aggression, while potential neuroprotective effects were
found in Huntington’s disease (Puri et al, 2002, 2005). A
recently presented, yet unpublished, study (Amminger et al,
2007) suggests that omega-3 fatty acids may delay the onset
of frank psychosis in adolescents at ultra-high risk of
psychotic disorders.

The underlying in vivo mechanisms of action of omega-3
fatty acids are still speculative. A recent study investigating
T2 relaxation time the in vivo brain effects of omega-3
fatty acids using T2 relaxation time in patients with bipolar
affective disorder supports preclinical findings that omega-
3 fatty acids modulate membrane integrity (Hirashima et al,
2004), thereby potentially altering signal transduction and
receptor binding (Vereb et al, 2003). One way to further
investigate the potential in vivo brain effects of omega-3
fatty acids is proton magnetic resonance spectroscopy
(1H-MRS), which can estimate regional concentrations
of various brain metabolites. For example, alterations in
N-acetylaspartate (NAA) most likely reflect changes in
neuronal integrity, changes in glutamate/glutamine (GLX)
may be linked to excitotoxicity, and changes in glutathione
(GSH) related to oxidative stress (Nakamura et al,
1997) and/or apoptotic activity (Dringen, 2000). GSH
synthesis is mainly regulated in astrocytes, and is
important as a defense mechanism against excess NO, while
functioning to protect glial and neuronal mitochondria
(Gegg et al, 2003, 2005).

1H-MRS studies in established schizophrenia found
altered metabolite profiles (Abbott and Bustillo, 2006;
Bertolino and Weinberger, 1999; Keshavan et al, 2000; Lyoo
and Renshaw, 2002; Stanley, 2002). However, 1H-MRS
studies of first-episode psychosis (FEP) are less conclusive
(Renshaw et al, 1995). The stage of disease at which
metabolite abnormalities are established is unclear; how-
ever, studies in young, untreated FEP patients suggests that
the neuronal integrity is largely preserved before onset of
psychosis (Wood et al, 2003), while the majority of 1H-MRS
studies in chronic schizophrenia show reduced levels of
NAA.

Here, we present a study investigating the metabolic
in vivo brain effects of ethyl-eicosapentaenoic acid (E-EPA)
using this technique in drug-naı̈ve or early treated FEP. We
speculated that E-EPA would show neuroprotective proper-
ties in vivo by maintaining neuronal integrity, protecting
the brain against excitotoxicity, and support antioxidative
defense. We chose E-EPA because previous controlled
studies in schizophrenia have shown some benefits (Emsley
et al, 2002, 2006; Horrobin et al, 2002; Peet, 2003, 2001; Peet
and Horrobin, 2002a, b), and because treatment response
has been associated with an increase in EPA (Arvindakshan
et al, 2003).

PATIENTS AND METHODS

Patients

All study participants were patients of the Early Psychosis
Prevention & Intervention Centre (EPPIC), Melbourne,

Australia that covers a service area with an approximate
population of 880 000. Study inclusion criteria were (1) age
between 15 to 29 years (inclusive) and (2) currently
psychotic as reflected by the presence of at least one
psychotic symptom daily for more than 1 week (either
delusions, hallucinations, disorder of thinking, and/or
speech other than simple acceleration or retardation, and
disorganized bizarre, or markedly inappropriate behavior).
Psychotic diagnoses were confirmed using the semi-
structured DSM-IV interview for research (First et al,
2002). Exclusion criteria were cases of drug-induced
psychosis (self-limiting drug-related psychotic experiences
that resolved within less than 7 days of drug abstinence),
first episode mania, organic disorders presenting with
psychotic symptoms (eg, temporal lobe epilepsy, significant
neurological conditions), history of intellectual disability, or
history of head injury with loss of consciousness.

Participants of this study were part of a larger rando-
mized double-blind placebo-controlled clinical trial (Berger
et al, 2008) investigating the augmenting effects of E-EPA
((5Z,8Z,11Z,14Z,17Z)-eicosa-5,8,11,14,17-pentaenoic acid)
in 80 drug-naı̈ve or early-treated FEP patients who
completed repeated MRI/MRS scans. Twenty-four patients
agreed to perform 1H-MRS assessments before commence-
ment of the study medication and after 12 weeks. Twelve in
each group either received 2 g oral E-EPA or 2 g placebo oil,
taken as separate 1-g doses in the morning and evening (see
Table 1 for details). All participants received atypical
antipsychotic medication (taken nightly) according to the
guidelines of the Early Psychosis Prevention & Intervention
Centre, Melbourne, Australia (McGorry and Warner, 2002).
Full details of the larger clinical trial design, patient
characteristics, and the clinical outcome measures can be
found elsewhere (Berger et al, 2008). The local research and
ethics committee approved this protocol and each subject
(or their guardian) provided written informed consent.

Table 1 Demographic Details for the Two Treatment Groups

E-EPA
group

Placebo
group

Age (years)a 19.6±2.9 21.4±4.1

Proportion male 67% 100%

Proportion schizophrenia, schizophreniform
psychosis

58% 83%

Proportion smokers at baselineb 36% 55%

Proportion antipsychotic-naı̈ve at baseline 42% 58%

Time between scans (days)a 86.2±6.8 83.2±3.9

Proportion receiving risperidone/quetiapine/
olanzapine

6/4/2 4/3/5

Number of days on antipsychotic medication
at baselinec

1 (0–16) 0 (0–11)

Total antipsychotic dose between scans
(mg of CPZ equivalent)a

15634±8264 19241±6976

GAF at baselinea 43.7±13.1 44.7±8.9

PANSS total at baselinea 81.5±14.3 82.2±17.6

Duration of untreated psychosis (months)c 3 (0.25–7) 5 (0.25–36)

aData presented as mean and standard deviation.
bData unavailable for two participants (one in each group).
cData presented as median and range.
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Proton Magnetic Resonance Spectroscopy

Short-echo (TE 30 ms) acquisition proton MRS was
performed on a 3 T GE LX Horizon scanner (GE Healthcare,
Milwaukee) using a PRESS sequence with two chemical-
shift-selective imaging pulses for water suppression. Spectra
were acquired with 128 transients of 2 k data points over a
frequency width of 5000 Hz with TR¼ 3 s. Spectra were
recorded from single isotropic 2-cm voxels placed in each
temporal lobe. Three-plane localizing images were acquired
to allow prescription of regions of interest (ROI) for spectra.
Sagittal plane, 2-cm thick scout images (T1 spin echo),
followed by 2-cm thick coronal images, centered in the
plane of the ponto-medullary junction, were acquired. An
ROI in each temporal lobe was selected in the coronal plane,
with the lateral aspect of the hippocampus in the center of
the ROI. The sagittal image was viewed to ensure that the
ROI did not include petrous temporal bone. This region of
interest consisted largely of the anterior hippocampus
(450%). Spectra were analyzed with LCModel (Provencher,
1993), using a basis set of 15 metabolites acquired on-site,
incorporating the standard macromolecule and baseline
fitting routines of LCModel. Metabolite concentrations were
estimated following calibration using the tissue water signal
as an internal standard. Results are presented in institu-
tional units approximating millimolar concentration, and
were rejected if the Cramer–Rao lower bound was greater
than 30%. Full-width-half-maxima and signal-to-noise
ratios averaged 0.093±0.015 and 11.3±1.9, respectively,
across both time points and both hemispheres. Only the
following metabolites were reliably estimated in sufficient
participants at both time points to allow analysis: NAA
(encompassing N-acetylaspartylglutamate and N-acetyl-
aspartate, NAA; n¼ 24), trimethylamines (TMA; n¼ 24),
creatine/phosphocreatine (Cr/PCr; n¼ 24), myo-inositol
(mI; n¼ 24), glutamate/glutamine (GLX; n¼ 23), and
glutathione (GSH; n¼ 15). Metabolite concentrations were
corrected for CSF and gray matter fraction within each
voxel using SPM analysis of segmented T1 images (see also
Supplementary Figure).

Analysis

Change scores were calculated as a percentage of the
baseline metabolite concentration for each metabolite for
each voxel. Repeated-measures ANCOVA (with hemisphere
as the repeated measure) covarying for age was performed
for each metabolite to compare differences in change
between the two treatment groups. One-sample t-tests were
used on the total group (collapsed across treatment) to test
whether the mean change in each metabolite significantly
differed from 0.

Partial correlations (controlling for age) were performed
between the change scores and change in clinical variables
regardless of treatment group.

RESULTS

The two treatment groups did not differ on baseline
metabolite levels (all p40.1) except for Cr/PCr
(F1,19¼ 8.2, p¼ 0.01), where the placebo group had
significantly higher concentrations than the EPA group.

No difference in percentage change between the two
treatment groups was identified for TMA (F1,21¼ 1.7,
p¼ 0.212), Cr/PCr (F1,21¼ 2.7, p¼ 0.115), mI (F1,21¼ 2.5,
p¼ 0.128), or NAA (F1,21¼ 0.0, p¼ 0.952). However, a
significant treatment group effect was found for GSH
(F1,12¼ 6.1, p¼ 0.03) and a significant hemisphere-by-
group interaction for GLX (F1,20¼ 4.4, p¼ 0.049). Inspec-
tion of the data (see Table 2) demonstrated that whereas
the E-EPA group showed a bilateral increase in GSH, the
increase in GLX was limited to the left hemisphere. When
the patients with affective psychotic disorders were
excluded and the analyses repeated, the effects were very
similar although not quite reaching significance.

Symptom scores generally showed an improvement,
ranging from a median improvement on the GAF scale of
14.5 points to a median change of 0 on the SAS. The change
in the PANSS negative symptom subscale significantly
correlated with three metabolites, GSH (r¼�0.57,
p¼ 0.041), TMA (r¼�0.48, p¼ 0.025), and Cr/PCr
(r¼�0.46, p¼ 0.032), indicating that the reduction of
negative symptoms correlated strongly with percentage
increase in these metabolites (see Figure 1). No other
significant correlations (controlling for age) between
percentage metabolite change (collapsed across hemi-
sphere) and PANSS total, positive and general subscale
scores, or CGI and GAF were identified, although the largest
correlations for these latter two variables were with GSH
(r¼ 0.28 and r¼�0.24 respectively). Furthermore, there
were no correlations between percentage metabolite change
and cumulative antipsychotic dose.

Correlations between percentage change for GSH and
glutamate/glutamine were positive (r¼ 0.64, p¼ 0.01),
indicating that the changes in both metabolites were closely
linked. One-sample t-tests showed no significant change in
any metabolite when the two groups were combined,
although the increase in NAA approached significance
(t23¼ 1.9, p¼ 0.064; see Table 2), indicating that NAA may
have increased between baseline and follow-up scan.
Correlations between age and percent change were positive
for all metabolites, ranging from r¼ 0.46 (p¼ 0.024) for
NAA to r¼ 0.33 (p¼ 0.122) for GLX, indicating that
younger age was associated with bigger metabolic changes
then in older participants (see Figure 2).

Table 2 Effects of 12-Week E-EPA Treatment in FEP

TMA Cr/PCr NAA mI GLX GSH

E-EPA

Left 9.8
(15.7)

16.3
(14.9)

3.3
(11.5)

14.4
(18.6)

22.0
(19.2)

45.1
(39.3)

Right 17.7
(19.1)

6.2
(13.2)

13.8
(18.2)

21.9
(24.2)

1.5
(12.7)

30.3
(24.0)

Placebo

Left 3.0
(15.7)

�2.2
(14.9)

12.6
(11.5)

�2.4
(18.6)

�9.1
(19.2)

7.5
(39.3)

Right �0.7
(19.1)

�3.9
(13.2)

3.5
(18.2)

0.8
(24.2)

�2.7
(12.7)

�20.7
(24.0)

Mean percentage change (95% CI) for each metabolite from each voxel.
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DISCUSSION

This study demonstrates metabolic in vivo brain effects of
2 g E-EPA on GSH and GLX in FEP, in which there was a
significant increase in these metabolites in subjects receiv-
ing E-EPA augmentation treatment compared with those on
treatment as usual. Further, we demonstrated that negative
symptom improvement was correlated with increases in
GSH, TMA, and Cr/PCr, and were not related to cumulative
dose of antipsychotic medication. The moderate to strong
correlation of negative symptom improvement with meta-
bolic brain changes suggests that the E-EPA-associated
increase in GSH may partially be responsible for its clinical
benefits. Our findings are of particular interest in light of
previous findings that glutathione levels are reduced (by
27%) in the cerebrospinal fluid of medication-free schizo-
phrenia patients (Do et al, 2000), and postmortem brain
tissue of patients with schizophrenia (Yao et al, 2006).
Glutathione protects dopaminergic neurons from oxidative
and excitatory damage (Grima et al, 2003; Nakamura et al,

1997). Taken together, these findings indicate that while
altered GSH metabolism might play a role in schizophrenia
and related disorders, augmentation therapy with E-EPA
may be able to normalize this and protect dopaminergic
neurons. One can speculate that the large effects of the
recently presented (not yet published) omega-3 fatty acid
supplementation study in prodromal adolescents (Amminger
et al, 2007) may partially be explained by such a
neuroprotective mechanism that may be sufficient to
protect dopaminergic neurons in individuals at incipient
risk for psychotic disorders.

Interestingly, the changes in GSH and GLX were
positively correlated (r¼ 0.64, p¼ 0.01), indicating that
the metabolic changes of these two metabolites were tightly
coupled. This would be expected for metabolites involved in
the same metabolic pathway (Dringen and Hirrlinger, 2003)
when neither is at limiting concentrations for subsequent
metabolic processes. Another potential explanation for the
linked change in 1H-MRS signals may be that the changes
occur at the site of production of both metabolites.
Glutathione is mainly produced by the reaction of glutamate
with cysteine and glycine, a process occurring predomi-
nantly in astrocytes (Dringen and Hirrlinger, 2003).
Astrocytes are also responsible for the conversion of
glutamate into glutamine (Hertz, 2004; Hertz and Zielke,
2004). Astrocytes constitute nearly half of the cells in our
brain, and play a crucial role in synapse formation and
functioning (Ullian et al, 2004, 2001). A relatively minor
change in glial cell number (eg, via antiapoptotic mecha-
nisms) and/or glial metabolic activity could therefore
explain our findings (Berger et al, 2003; Jarskog, 2006).

The NAA increase of the combined group between
baseline and follow-up scan, although only a trend, was
not expected. Schizophrenia may be associated with a
progressive decrease in NAA (excessive loss compared with
the decrease associated with normal aging) and it has been
postulated that in particular the onset of schizophrenia is
associated with excessive synaptic pruning (Feinberg, 1982;
Keshavan et al, 1994). However, our findings suggest that
the neuronal integrity was maintained or even improved in
the recovery phase of our treated FEP sample. The latter is
in line with a recent study suggesting that atypical
antipsychotic medication may protect the brain of first-
episode schizophrenia patients from gray matter loss
(Lieberman et al, 2005). The positive correlation between
age and change of in vivo brain metabolites may indicate an
advantage for younger FEP patients with neuroprotective
treatment strategies, indicating that the potential for a
restoration of synaptic integrity may decrease with adult-
hood (Nakamura et al, 1999; Savvateeva et al, 2000). While
this would have particular importance for early intervention
strategies of psychotic disorders, it needs to be confirmed
by additional clinical trials.

This study has several potential limitations. First, the
sample size, although similar to previous studies (Steen
et al, 2005), is still relatively small, and we were not in the
position to match the groups on diagnosis because the
current study was embedded in a larger double-blind,
placebo-controlled study of 2 g EPA augmentation in 80
drug-naı̈ve or early treated FEP patients, limiting any
stratification procedures without breaking the blindness.
The results of our own larger clinical study suggest that
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E-EPA has more impact on non-affective psychotic
disorders, accelerates treatment response, and reduces the
amount of prescribed antipsychotic medication, as well as
results in better tolerability (Berger et al, 2008). It is
therefore noteworthy that the placebo group of the
embedded Magnetic Resonance Spectroscopy study had a
higher proportion of non-affective psychosis patients than
the E-EPA group, meaning that we are likely to be
underestimating the metabolic effect of E-EPA in the
current study (as E-EPA seems to be beneficial mainly in
non-affective psychosis). Second, the restriction of our ROI
to the medial temporal lobes means that we cannot
determine whether E-EPA has an effect throughout the
brain or only in the temporal lobe. Third, the lack of a
longitudinal healthy control arm means that we cannot
address the question of whether the E-EPA effects were
specific to early psychosis or a more general ‘healthy’ brain
response (Yehuda et al, 1999). Fourth, MRS measures show
normal physiological variation of between 5 and 28%
(Wellard et al, 2005), meaning that it is potentially possible
that our findings are merely due to normal fluctuations in
metabolites. However, it seems unlikely that we would have
found treatment group differences if this were the case.
Finally, we had no measure of EPA adherence so it was not
possible to establish a dose–response relationship. Further-
more, we did not assess dietary intake of essential fatty
acids (although the dose given was 10 to 20 times the
amount of EPA found in 100 g of tuna).

The MRS analysis used in this study utilizes a library of
complex multipeak metabolite spectra that are matched and
scaled to fit the observed subject spectrum (Provencher,
1993). Although peaks from other metabolites overlap with
the glutathione spectrum, it is possible to detect contribu-
tions from metabolites with complex spectra, such as
glutathione, even when the individual metabolite is not
clearly visible in the spectrum (Pfeuffer et al, 1999a, b).
Comparisons of a short-echo single-voxel acquisition
method, as used in this study, with spectral editing
techniques for glutathione measurement showed that the
method used in our study gives comparable measurements
(Oz et al, 2006).

In conclusion, the addition of E-EPA to standard
treatment in early psychosis results in a large increase in
glutathione in both temporal lobes, and to a lesser extent, an
increase in glutamate/glutamine that reaches significance
only in the left hippocampus. Negative symptom improve-
ments correlated with increases in the concentration of a
number of metabolites, in particular glutathione. We
speculate that the tightly coupled increase in GSH and
GLX can be explained via a protective effect of E-EPA on
astrocytes, which promotes antioxidative defense mechan-
isms and secures a proper functioning of the glutamate/
glutamine cycle in early psychosis. Our results provide
encouragement to further investigate E-EPA as a potential
neuroprotective agent.
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