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The association between activation of the immune system and mood disorders has been reported by several studies. However, the

mechanisms by which the immune system affects mood are only partially understood. In the present study, we detected depressive-like

behavior in a rat animal model which involves the induction of inflammation in the nasal cavities by intranasal (i.n.) instillation of bacterial

lipopolysaccharides (LPS). Female rats showed depressive-like behavior as evidenced by the forced swim test after repeated i.n.

administration of LPS. These responses were not paralleled by alterations in motor activity as measured by the open field test. In the

same animals, corticosterone responses after the swimming sessions were the highest of all the groups evaluated. Real-time RT PCR was

used to analyze the transcriptional regulation of the cytokines interleukin-1b, tumor necrosis factor-a, and interleukin-6 in several brain

regions. Increased tumor necrosis factor-a was detected in the hippocampus and brainstem of female rats challenged with i.n. LPS. These

results suggest that peripheral inflammation in the upper respiratory tract is an immune challenge capable of inducing depressive-like

behavior, promoting exaggerated glucocorticoid responses to stress, and increasing cytokine transcription in the brain. These results

further our understanding of the role that the immune system may play in the pathophysiology of depression.
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INTRODUCTION

Evidence obtained from clinical human studies suggest that
activation of the immune system and the cytokine network
may be related to at least some aspect of the complex
etiology of major depression (Anisman et al, 2005; Capuron
et al, 2001; Capuron and Dantzer, 2003; Dantzer and Kelley,
2007; Dantzer et al, 2002; Prolo and Licinio, 1999; Raison
et al, 2006; Schiepers et al, 2005). It is known that treatment
of hepatitis-C with the cytokine interferon-a resulting in the
reduction of viral titers (Kobayashi et al, 2006) induces
depression in a large number of patients (Crone et al, 2004;
Dieperink et al, 2000; Janssen et al, 1994; Raison et al,
2005; Schaefer et al, 2002). Treatment with the cytokine

interleukin-2 (IL-2) in melanoma patients produces similar
psychiatric side effects (Capuron et al, 2000; Denicoff et al,
1987). Moreover, several studies have reported the presence
of elevated proinflammatory cytokines in depressed pa-
tients (Frommberger et al, 1997; Levine et al, 1999) and
the reduction in these mediators of inflammation after
treatment with antidepressants (Yirmiya et al, 1999).
Understanding the relationship and mechanistic basis
of interactions between the immune system and mood
disorders could provide novel insights into the etiology and
treatment of depression.
A well-established model to study behavioral and

physiological responses under activation of the immune
system is the administration of bacterial lipopolysac-
charides (LPS). LPS are components of the cell wall of gram
negative bacteria that generate a dose-dependent activation
of the innate immune response and secretion of proin-
flammatory cytokines (Miller et al, 2005). LPS administered
intravenously (i.v.) or intraperitoneally (i.p.) have been
shown to induce changes indicative of depression in human
subjects and affect behaviors related to mood in rodent
animal models (De La Garza, 2005; Engeland et al, 2003;
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Reichenberg et al, 2001). Although the degree to which
sickness, rather than depression, is involved in these
behavioral changes is under debate, studies show that
healthy individuals receiving low doses of i.v. LPS had
elevated anxiety and depressive scores (Reichenberg et al,
2001). These effects were not accompanied by manifest
symptoms of systemic sickness such as changes in heart rate
but by increased circulating cytokines. In addition, in
rodents, i.p. LPS have been found to elicit behaviors related
to anxiety and depression, including reduced exploratory
behavior (Engeland et al, 2003), reduced social interaction,
and increased anhedonia (De La Garza, 2005). However, i.p.
administration of LPS failed to increase immobility time in
the forced swim test (FST) in rats (Deak et al, 2005), or it
did in mice only when the doses were high enough to also
affect motor activity (Dunn and Swiergiel, 2005). In rodents,
increased immobility time in the FST without changes
in motor activity is often interpreted as a measure of
depressive-like behavior (Cryan and Holmes, 2005; Cryan
et al, 2005; Porsolt, 1979). Because the FST has been
validated for its sensitivity to the effect of clinically
efficacious antidepressants, these findings may limit further
studies on mechanisms linking activation of the immune
system with mood disorders and the evaluation of new
antidepressant interventions related to this phenomenon.
In the present study, we sought to advance further the

understanding of the relationship between immune func-
tion and depression using the LPS model and the FST in
rats. The first objective was to examine the effect of the
route of LPS administration. While i.p. administration of
LPS is a good model for sepsis and systemic inflammatory
reaction, there is some evidence indicating that other types
of inflammatory processes such as upper respiratory tract
illnesses also induce negative mood, reduced alertness, and
impaired psychomotor functions (Capuron et al, 1999;
Hall and Smith, 1996; Smith et al, 1998). Inflammation in
the upper respiratory airways such as those triggered by
airborne pathogens may be an important immune challenge
for brain function because of the unique characteristics of
the nasal neuro–epithelium that is exposed to the environ-
ment, and the known transfer of large molecules and
pathogens into the brain via the intranasal (i.n.) pathway
(Illum, 2004; Jin et al, 2001; Loftus et al, 2006; Mori et al,
2005; Thorne et al, 2004). This raises the possibility that
transfer of LPS or cytokines into the brain via the i.n.
pathway may exert effects on brain function and behavior
that differ from the inflammation caused by i.p. LPS
administration. To test, we studied the effects of i.n. and i.p.
LPS administration on depression related behavior in the
FST and neuroendocrine responses to the stress of forced
swimming. In addition, because peripheral administration
of LPS has been shown to induce cytokine expression in the
brain (Buttini et al, 1996; Quan et al, 1999; Tonelli et al,
2003; Tonelli and Postolache, 2005) we examined the effects
of i.n. LPS delivery on gene expression of the cytokines
interleukin-1b (IL-1b), tumor necrosis factor-a, and inter-
leukin-6 (IL-6) in the olfactory bulbs, prefrontal cortex,
hippocampus and brainstem. These areas were selected
based on their involvement in depression (Arango et al,
2002; Drevets, 2000; Song and Leonard, 2005) and for being
a target of i.n. transfer of molecules (Fliedner et al, 2006;
Thorne et al, 2004).

There is increased prevalence of depression in women
relative to men (Noble, 2005) and similar sex-related
differences have been reported in depression-related
behavior in rats (Dalla et al, 2005). Moreover, female rats
exhibit greater sensitivity than males to LPS and/or
cytokines in several behaviors including locomotor activity,
sucrose intake and mating behavior (Avitsur and Yirmiya,
1999a, b; Engeland et al, 2003; Merali et al, 2003). Therefore,
the second objective of the present study was to test the
hypothesis that females are more sensitive to the depresso-
genic effects of i.p. and/or i.n. LPS.

MATERIALS AND METHODS

Animals

A total of 192 inbred Fischer F344 (F344/NHsd) rats divided
into equal parts of males and females were used in these
studies. This strain was selected based on previous studies
showing strong cytokine expression in cortical regions of
the brain after LPS injection in combination with high-
stress system reactivity (Tonelli et al, 2001, 2003).
The animals were obtained from Harlan–Sprague Dawley

(Indianapolis, IN) and shipped to our animal facility at 2
months of age. Animals were housed in groups of three in
Plexiglas cages with standard food pellets and water
available ad libitum in a room at a constant temperature
of 231C. All animals were maintained on a 12:12 light dark
cycle (lights on at 0700 h). The animals were left undis-
turbed for 1 week and then handled daily for an additional
week before starting with the experimental procedures.
Weight was monitored daily starting with the handling and
continued until the experiments were terminated. Vaginal
smears were taken to determine the phase of the ovarian
estrous cycle as described (Becker et al, 2005). All animal
procedures were approved by the Institutional Animal
Care and Use Committee of the University of Maryland,
Baltimore.

Intraperitoneal LPS Studies

Rats were injected with 1 or 2mg/kg LPS (Sigma, St Louis,
MO, serotype 055:B5) or 0.9% saline between 1900 and
2000 h or between 0900 and 1000 h and evaluated in the
open field and FST at 12 and 24 h after administration
respectively. These doses and time points were selected
based on our previous studies showing peak of expression
of IL-1b mRNA in the brain parenchyma after 12 h of LPS
administration (Tonelli et al, 2003) and studies showing
measurable levels of this cytokine in the brain parenchyma
at 24 h (Buttini and Boddeke, 1995) correlated with maximal
microglial activation at this time point (Buttini et al, 1996).

Intranasal LPS Studies

Rats were slightly anesthetized with isofluorane in induction
chambers and administered in the nasal cavities with either
a single dose of LPS (100 mg/rat in 100 ml saline) and
evaluated 24 h later or they were administered with two
doses of LPS (100 mg/rat in 100 ml saline) on 2 consecutive
days and evaluated 24 h after the last administration
(48 h after the first administration). Control animals were
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subjected to the same schedule but administered with 100 ml
of saline solution. All i.n. instillations were made between
0800 and 1000 h. These doses and schedule of administra-
tion were based in previous studies in mice (Delayre-Orthez
et al, 2005a, b; Tesfaigzi et al, 2001) and the volumes were
adjusted for the rat to avoid reaching the lungs (KleinJan
et al, 2006). Groups of animals were used for behavioral
testing or they were used for brain cytokine determination
without behavioral testing. All groups of animals were used
for corticosterone determinations. All animals were killed
by rapid decapitation without anesthesia. Trunk blood
was collected in EDTA containing tubes and the plasma
immediately frozen until corticosterone determinations.
For cytokine determinations, the brains were immediately
removed and frozen by immersion in isopentane and stored
at �801C.

Open Field Testing

Ambulatory motor activity was monitored in two square
Plexiglas enclosures (40.1� 40.1 cm) maintained under
constant illumination by four overhead 34W fluorescent
lights. The floor was divided in 16 equal squares and a
digital video camera was placed on top and recorded the
session. The animals were placed in one corner of the
enclosures and measurement of horizontal motor activity
over 5min was determined as the number of times the
animal entered a square measured by a blind rater. The
number of crossings of the center field (crossing any of the
four center squares) and rearing were also measured. At the
completion of the session, the animals were returned to
their cages, left undisturbed for 15min and then tested in
the FST.

Forced Swim Test

On day 1, rats were placed in a vertical glass cylinder
(diameter 22.5 cm and height 60 cm) containing 35 cm of
water maintained at 251C for 10min. Twenty-four hours
later, the animals were forced to swim for 5min (day 2).
Behavior during the full 10min (day 1) and 5min
(day 2) was recorded as digital video by the Forced
SwimScan system (Cleversys Inc., Reston, VA). The
system automatically analyzed immobility, swimming,
and escape behaviors as described by Detke et al (1995),
and Detke and Lucki (1996). This system has been

validated in mice (Hines et al, 2006) and was also vali-
dated in our laboratory by blind raters (Supplementary
Figure S1).

Corticosterone Determinations

Determinations were performed in the i.n. group of animals.
All groups of animals were killed between 1200 and 1300 h.
For those rats that were behaviorally tested, at the end of the
FST they were removed from the cylinder, dried with paper
towels, and placed in an individual cage to rest and recover
for 1 h before termination of the experiment. Plasma
corticosterone levels were determined by radioimmuno-
assay using a double antibody kit (ImmuChem, MP Bio-
medicals, Orangeburg, NY) according to manufacturer’s
instruction. Intra assay variation was less than 8%.

Real-Time RT-PCR

These determinations were performed in the brain of i.n.
treated animals that were not behaviorally tested. Frozen
brains were allowed to reach ice-cold temperature and the
olfactory bulbs, frontal cortex (Bregma 5.2 to 4.2mm),
hippocampus, and brain stem (Bregma �9 to �14mm)
were dissected and processed for mRNA extraction using
the Trizol reagent (Invitrogen) as described (Tonelli et al,
2004). Five hundred nanograms of total RNA per sample
was reverse-transcribed into cDNA in a 20 ml reaction
mixture using an iScript cDNA Synthesis Kit (Bio-Rad,
Hercules, CA, USA) according to manufacturer’s instruc-
tions. Real-time RT-PCR was conducted using the iQ SYBR
Green Supermix (Bio-Rad) in a 50 ml reaction mixture using
the set of primers listed in Table 1. All sets of primers were
tested in 0.9% agarose gel to confirm a single amplification
product. The amplified products for cytokines were directly
cloned into the pCRII-Topo vector (Invitrogen, Paisley,
Scotland, UK) and sequenced to confirm their identity. All
the primer pairs were designed using the Accelrys Gene 2.0v
software.
The real-time PCR was run on a MyiQ instrument (Bio-

Rad) with a three-step cycling program as follows: an initial
hot start for 5min at 951C followed by 40 cycles with a
denaturation step of 15 s at 951C, an annealing step of 30 s at
551C, an extension step of 30 s at 721C with the optics on at
this last step. In preparation of a melt curve, the samples
were heated for 1min at 951C then cooled for 1min at 551C,

Table 1 Primer Sequences Used for Real-Time RT-PCR Determinations

Gene Accession Primer sequence Region Product length

IL-1b NM_031512 Fwd 50-AATGCCTCGTGCTGTCTGACC-30 471–588 118

Rev 50-TTGTCGTTGCTTGTCTCTCCTTG-30

TNF-a NM_012675 Fwd 50-TCTTCTGTCTACTGAACTTCGGGG-30 284–365 82

Rev 50-ATGGAACTGATGAGAGGGAGCC-30

IL-6 NM_012589 Fwd 50-CAAGAGACTTCCAGCCAGTTGC-30 81–191 111

Rev 50-TGTTGTGGGTGGTATCCTCTGTG-30

18S X01117 Fwd 50-CCAGTAAGTGCGGGTCATAAGC-30 1650–1732 83

Rev 50CCATCCAATCGGTAGTAGCGAC-30

IL-1b, interleukin-1 b; TNF-a, tumor necrosis factor a; IL-6, interleukin-6; 18S, rat ribosomal RNA subunit.
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and the melt curve was executed in 10 s increments of 0.51C
with the temperature increasing from 55 to 951C with the
optics on. All the primers used were selected and tested
for the described amplification conditions. Efficiency and
consistency of the cDNA synthesis was determined by
amplification of the rat 18S gene as a control. For each
round of amplifications, only those samples that were
within 1 cycle of difference, with respect to the mean for 18S
were considered for further analysis. For each sample of a
specific target gene, each cycle threshold was normalized
with respect to 18S. Relative expression was determined
using the 2�DDCt method (Livak and Schmittgen, 2001).
The following genes were analyzed according to their
published sequences: interleukin-1b (IL-1b, NM_031512);
tumor necrosis factor-a (TNF-a, NM_012675); interleukin-6
(IL-6, NM_012589); rat ribosomal RNA subunit 18S
(18S, X01117).

Statistics

Open field and the FST data were analyzed with a two-way
analysis of variance (ANOVA) with sex (two levels: female/
male) and treatment (three levels: control; LPS 12 h; LPS
24 h) as factors for i.p. studies. For i.n. studies the same
model was used with the levels: control; i.n. single dose; i.n.
repeated dose.
Corticosterone data were analyzed with a three-way

ANOVA with sex (two levels: female/male), treatment (two
levels: control; i.n. LPS) and condition (two levels: subjected
to forced swim test; not subjected to forced swim test) as
factors.
Cytokine expression data were analyzed with a two-way

ANOVA with sex (two levels: female/male) and treatment
(three levels: control; LPS single dose; LPS repeated dose) as
factors.
Tukey’s multiple pair-wise comparisons were used as

post hoc test for all the models. Significance level was set
at po0.05.

RESULTS

Oscillation in Swimming Behavior Across the Ovarian
Estrous Cycle in Fischer 344 Rats

It has been reported that female rats subjected to the FST
display variations in swimming behavior during different
phases of the estrous cycle (Barros and Ferigolo, 1998;
Consoli et al, 2005; Contreras et al, 1998; Frye and Walf,
2002; Marvan et al, 1996). Increased immobility time has
been reported during both the proestrus/estrus phase
(Contreras et al, 1998; Frye and Walf, 2002; Marvan et al,
1996) and during the diestrus 1 and 2 phases (Barros and
Ferigolo, 1998; Consoli et al, 2005). These differences were
reported in out-bred and inbred rat strains. An early study
in F344/NHsd rats did not detect differences in swimming
behavior between males and females (Armario et al, 1995);
however, the phase of the estrous cycle in those experiments
were not considered. We therefore examined the behavioral
responses in saline-treated animals on the FST in females
during the ovarian estrous cycle (n¼ 24) and compared the
response with males (n¼ 21). During the first day of testing,
a significant effect for immobility time (F(1, 41)¼ 20.1;
po0.001) and swimming (F(1, 41)¼ 12.6; po0.001), and
escape (F(1, 41)¼ 13.24; po0.008) behaviors were detected
(Figure 1a). Post hoc analysis showed that females during
the proestrus/estrus phase had increased immobility time
and decreased swimming and escape time with respect to
both females on diestrus 1 and 2 and to males (Figure 1a).
No differences were observed when comparing male with
female rats tested during the diestrus phase. On day 2, a
significant sex effect in immobility (F(1, 41)¼ 25.4;
po0.0001) and swimming (F(1, 41)¼ 10.7; po0.001), and
escape (F(1, 41)¼ 19.79; po0.0001) behavior was detected
(Figure 1b). Post hoc analysis showed that females had
increased immobility time, reduced swimming, and escape
behaviors as compared to males regardless of the phase of the
estrous cycle (Figure 1b). To avoid introducing this variable
when studying the effects of LPS in the FST on day 1, animals
were administered and tested during the diestrus phase.
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male rats regardless the phase of the estrous cycle. Values are means7SEM. #Significant sex differences po0.01.
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Behavioral Effects of i.p. LPS Administration

Open field test. Female and male rats-treated i.p. with
2mg/kg of LPS and tested at 12 (n¼ 24) or 24 (n¼ 24)
hours after administration showed reduced levels of
horizontal exploratory motor activity [F(2, 42)¼ 16,36;
po0.0001] (Figure 2a). In addition, we detected decreased
activity in the open field with the dose of 1mg/kg at 12 and
24 h after administration (data not shown). Overall, the
activity of female and male rats treated with 2mg/kg and
tested at 24 h was very low (Figure 3a). Significant
differences in all the parameters analyzed in the open field
including total activity, center crossings, and rears were
detected (Figure 3a). Additional signs of sickness were also
evident including piloerection at all times tested and red
tears at 24 h after i.p. LPS administration. No differences
were observed when comparing sexes. These data indicate
that i.p. LPS at these doses affects motor exploratory
behavior in F344/Nhsd rats as shown previously in mice
(Dunn and Swiergiel, 2005).

Forced Swim Test

Intraperitoneal administration of 2mg/kg of LPS produced
a significant effect on immobility (F(1, 44)¼ 19.7; po0.0001),
swimming (F(1, 44)¼ 8.34; po0.006), and escape (F(1, 44)¼
11.7; po0.001) behaviors in both male and female rats at
24 h after administration when tested on day 1 (Figures
2b and 3b). Post hoc analysis indicated that LPS treated
animals had increased immobility and decreased swimming
and escape behavior with respect to saline treated rats. No
interactions of gender� treatment was observed for any
parameter; however, LPS-treated females showed higher
immobility values with respect to LPS-treated males
(Figures 2b and 3b). No significant differences were
observed with respect to saline-treated rats when the
animals were tested at 12 h (Figure 2b). Similarly, no
differences in immobility were observed in rats that
received an i.p. dose of 1mg/kg and were tested at 12 or
24 h after LPS administration. Neither dose had any
significant effect when the rats were tested on day 2
(Supplementary Figure S2).

Behavioral Effects of i.n. LPS Administration

Open field test. Administration of LPS in the nasal cavity
had no effect on ambulatory motor activity, number of
crossings of the center field or rearing in any dose or
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schedule of administration tested in this series of experi-
ments (Figures 4a and 5a). In addition, no significant
changes in body weight were detected (Supplementary
Figure S3).

Forced swim test. Repeated i.n. administration of 100 mg/rat
of LPS induced a sex� treatment effect in immobility
(F(1, 41)¼ 5.5; po0.024) and escape (F(1, 41)¼ 5.6; po0.032)
behaviors respectively on the first day of the FST (Figures
4b and 5b). Post hoc analysis indicated that LPS treated
females had increased immobility and reduced escape
behavior with respect to control conditions and to males
treated with LPS. No differences in swimming time were
detected in LPS-treated animals with respect to control saline
(Figures 4b and 5b). Administration of single doses of LPS did
not induce statistically significant differences in any parameter
analyzed (Figure 4b). Similar to i.p. LPS, i.n. LPS did not
induce significant differences with respect to control saline
when the animals were evaluated on the second day of the test.
These data indicate that repeated LPS administration in

the nasal cavities of female rats over a period of 2 days
induces behavioral changes indicative of depression as
revealed by the FST without affecting overall motor activity.
Moreover, the increased immobility time was paralleled by a
reduction in escape behavior without affecting swimming
behavior.

Effects of i.n. LPS on Corticosterone Release

Figure 6 shows plasma corticosterone concentrations in
male and female rats (sex factor) challenged i.n. with two
doses of LPS (100 mg/rat) (treatment factor) and subjected
or not to the FST (condition factor). Statistical analysis
showed a significant sex � treatment � condition effect.
Sex effect (F(1, 74)¼ 60.02; po0.0001); treatment effect
(F(1, 74)¼ 50.90; po0.0001); condition effect (F(1, 74)¼
37.89; po0.0001). Post hoc analyses indicated that females had
higher values as compared to males in all the conditions
tested. The highest plasma corticosterone concentrations
were observed in females administered i.n. with LPS and
subjected to the FST (Figure 6). Post hoc comparisons

revealed that females under this condition had significantly
increased values with respect to any other condition tested
and with respect to males.
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#Significant sex differences (#po0.05).
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Effects of i.n. LPS on Cytokine Gene Expression

Interleukin 1-b. No differences with respect to control
saline were observed in any of the brain regions analyzed
after a single or repeated i.n. administration of LPS in both
male and female rats. In addition, no sex differences were
detected in any of the regions analyzed.

Tumor necrosis factor-a. A significant sex� treatment
effect was detected in the hippocampus (F(1, 21)¼ 4.25;

po0.04) and brainstem (F(1, 21)¼ 4.89; po0.02) after two
doses of 100 mg/rat i.n. LPS administration (Figures 7b and
e). Post hoc analysis revealed that in the brainstem, two
doses of i.n. LPS induced a significant increase in both male
and female rats with respect to their own control and
this increase was higher in females compared to males
(Figure 7e). In the hippocampus, a significant increase with
respect to controls was observed only in females after two
i.n. doses of LPS (Figure 7b). No significant differences were
observed in the brainstem and hippocampus after a single
dose of i.n. LPS. Similar to IL-1b, no differences were
detected in the frontal cortex and olfactory bulbs under any
condition tested.

Interleukin-6. A significant sex� treatment effect was
detected in the hippocampus of females (F(1, 21)¼ 4.05;
po0.05) but not in the brainstem (Figures 7c and f). Post
hoc analysis showed that in the hippocampus females had
increased levels of IL-6 with respect to males after repeated
administration of i.n. LPS (Figure 7c). As it was the case for
IL-1b and TNF-a, no differences with respect to control
saline was detected for IL-6 in the olfactory bulbs and
frontal cortex after i.n. LPS.

DISCUSSION

The data presented here show depressive-like behaviors
induced by peripheral LPS when administered in the nasal
cavities of female rats. These effects were paralleled by
exaggerated corticosterone responses after the swimming
sessions suggesting altered glucocorticoid responses to
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stress. Finally, elevated TNF-a in the hippocampus and
brainstem of females challenged with i.n., LPS was also
observed. Furthermore, these data confirm previous ob-
servations indicating that the induction of depressive-like
behaviors in rodents measured by the FST after i.p.
administration of LPS are dose-dependent and are paral-
leled by motor dysfunction (Deak et al, 2005; Dunn and
Swiergiel, 2005).
Intranasal administration of LPS-induced measurable

increases in immobility time in female rats 48 h after the
initial instillation, and after two consecutive administra-
tions of LPS. No alterations in total exploratory activity in
the open field were detected and no significant changes
in body weight were observed. This is suggestive that the
behavioral effect is related to the local inflammatory process
in the nasal cavities without inducing evident signs of
sickness. It also indicates that i.n. LPS requires a certain
time to affect behavior and that it is sex-specific. Moreover,
it has to be considered that the effect was restricted to the
first day of test, and that it did not affect swimming
behavior but did affect escape behavior. On the other hand,
depressive-like behavior measured by increased immobility
was observed in both male and female rats administered i.p.
with the higher dose tested in this study (2mg/kg) at 24 h
after administration. The same dose tested at earlier time
points or lower doses at 24 h did not produce significant
changes in immobility, but did affect exploratory responses
in the open field test. These data indicate that although
signs of sickness induced by i.p. LPS are measurable, rats
are capable of mounting a behavioral response to a stressor
such as the FST during the acute phase response to systemic
inflammation. It also indicates that there is a threshold in
which rats can cope with the FST challenge during sepsis
which is dose- and time-dependent. An important con-
sideration of the present i.p. studies is that only single
injections of LPS were tested. It is possible that other
schedules of i.p. LPS injections such as repeated lower
doses, for example, may still provide a model to differ-
entiate sickness from depression using the i.p. LPS and
the FST.
Although there is some controversy about the FST as a

model of depressive-like behavior, it is accepted that the test
models certain aspects of depression involving the uncon-
trollability of a stressor (the rat cannot escape from the
cylinder) evaluating passive (immobility or floating) vs
active (struggling and swimming) coping responses to stress
(Cryan and Holmes, 2005). The type of response observed
after i.n. LPS may indicate a specific neurochemical system
involved in response to the i.n. LPS challenge since different
types of antidepressants have been shown to have different
effects on active behaviors in the FST (Cryan et al, 2005).
While the present studies may be far from providing
specific mechanisms of immune function leading to
depression at the individual level, the i.n. LPS immune
challenge indicates that upper respiratory infections may be
one factor related to the increased incidence of mood
disorders during certain times of the year (Nelson et al,
2002). On average, children have between six and eight, and
adults between two and four, upper respiratory infections
each year (Monto, 1994; Monto and Ullman, 1974). Despite
their usually benign course, upper respiratory infections
place an enormous economic burden on society; they are

responsible for 20 million days absence from work and 22
million days of absence from school in the USA (Adams
et al, 1999).
Intranasal instillation of LPS is known to induce airway

inflammation characterized by neutrophil and macrophage
infiltration and the production of chemokines, and cyto-
kines including TNF-a (Delayre-Orthez et al, 2005a, b).
Moreover, i.n. instillation of recombinant cytokines
including IL-6 and IL-12 have been shown to affect the
course of experimentally induced neurological disorders in
rats (Kalueff et al, 2004; Pelidou et al, 2000). Although the
mechanisms on how cytokines applied i.n. relate to brain
function are unknown, these studies suggest that cytokines
in the nasal cavities secreted as part of an inflammatory
process have the potential to influence brain function. In
support of this observation, the present data show
measurable induction of cytokine transcription in the brain
after 48 h of the initial i.n. LPS administration. From the
brain regions examined, the highest reactivity corresponded
to the brainstem and the hippocampus, and no changes
were detected in the frontal cortex and olfactory bulbs. With
the exception of the olfactory bulbs, the cytokine response
of these brain structures is in agreement with the regions in
which i.n. administration of radiolabelled insulin-like
growth factor-I (a 7.65 kDa protein) distributes in the brain
(Thorne et al, 2004). In addition, the involvement of these
regions in the modulation of mood has been reported
(Arango et al, 2002; Drevets, 2000). However, it has to be
considered that other important regions including the
hypothalamus and amygdaloid complex that are involved
in mood regulation and are targets of i.n. delivered
molecules were not analyzed in the present study. Another
consideration is that changes in cytokine expression in the
olfactory bulbs were expected but not detected. It is possible
that this may be due to a differential immune response
of this area involving a different set of cytokines and
chemokines depending on the type of antigen (Shwe et al,
2006). The close relationship of the olfactory bulbs with
sensory neurons exposed to the environment is likely to
play a role in a differential cytokine response of this
structure.
We obtained in i.n. challenged animals a dimorphic

response in the hippocampus and brainstem in the
induction of TNF-a transcription. It is known that females
of many species mount a stronger immune response than
males after immunization and have increased survival ratio
to infections (Verthelyi, 2001; Weinstein et al, 1984).
Increased humoral responses and production of antibodies
as compared to males have been proposed to participate in
this increased survival ratio (Verthelyi, 2001). In the brain,
enhanced immune responses in female with respect to male
were reported in mice after i.n. inoculation with vesicular
stomatitis virus (Barna et al, 1996), herpes simple virus-2 or
intracerebral administration of LPS (Soucy et al, 2005). This
has been proposed to be related to a stronger cytokine
expression and transfer from innate to adaptive immune
responses in females (Soucy et al, 2005) in which TNF-a
have been shown to play an important role (Rahman and
McFadden, 2006). Relevant to this point, it has been recently
shown that mice deficient in TNF-a receptors show reduced
immobility time in the FST supporting a role for TNF-a in
behavioral responses of depression (Simen et al, 2006).
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Moreover, the authors report that TNF-a receptors in
the wild type animal are highly expressed in the brainstem
and hippocampus, the 2 areas in which the present study
reports increased transcription of TNF-a after i.n. LPS
challenge.
In the hippocampus, but not in the other brain regions

studied, increased IL-6 expression in females after i.n. LPS
was also detected. IL-6 receptors in this region are abundant
and IL-6 has been shown to interfere with memory
consolidation (Balschun et al, 2004). However, the present
study did not address whether this profile of cytokine
expression in these brain regions is causally related to
behavioral symptoms observed. Moreover, there is the
possibility that circulating levels of cytokines induced by
the i.n. treatment may be contributing to the observed
effects. Also, the role of sex hormones in mediating the
behavioral, glucocorticoid and cytokine responses observed
in the present study has not been addressed. These issues
will be matter of future studies.
Another dimorphic factor induced by i.n. LPS that may be

contributing to the behavioral symptoms independent of
brain cytokines is the glucocorticoid response to the FST. It
is known that female F344/NHsd rats show the highest
hypothalamic–pituitary–adrenal (HPA) axis reactivity from
all of the known inbred and outbred rat strains tested
(Tonelli et al, 2001). Nevertheless, the concentrations
detected in the present study for female F344/NHsd rats
challenged with i.n. LPS and subjected to the FST are likely
to represent maximal corticosterone responses for this
strain (Armario et al, 1995; Grota et al, 1997; Tonelli et al,
2001, 2003). Corticosterone concentrations in i.n. treated
animals were more than double with respect to control and
similar to values after the stress of forced swimming. More
importantly, values in i.n. LPS animals exposed to the FST
were double in respect to those induced by i.n. LPS alone or
by the FST alone. These findings may also be of relevance
for human depression. Although there is no conclusive
evidence on the exact mechanisms on how glucocorticoids
and depression relate to each other, studies performed in
depressed individuals strongly suggest that altered gluco-
corticoid levels and/or HPA axis responses are a hallmark of
human depression (Belanoff et al, 2002; Gillespie and
Nemeroff, 2005; Gold and Chrousos, 2002; Gold et al, 2002;
McEwen, 2002; Swaab et al, 2005). Both human studies and
animal models show that hypercortisolemia and/or altered
glucocorticoid responses to stress are found in humans
suffering from depression and in animals that have
developed depressive-like behaviors. Several mechanisms
are under investigation to explain this association, includ-
ing interaction with neurotransmitter and neuropeptides
(Leonard, 2005; Schulkin et al, 1998), structural remodeling
of the brain (McEwen, 2005), loss of glucocorticoid receptor
function (Pariante, 2004; Pariante and Miller, 2001) and
interactions with the immune system (Himmerich et al,
2006; Leonard, 2005).
In summary, repeated i.n. administration of LPS in female

rats produced depressive-like behavior, maximal corticos-
terone responses to stress, and increased TNF-a transcrip-
tion in the brain. With additional studies to elucidate their
mechanisms, these findings may further our understanding
of the role that the immune system may play in the
pathophysiology of depression.
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