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High-Dose Methadone Maintenance in Rats: Effects on
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It has been demonstrated that high-dose methadone maintenance is efficacious in reducing cocaine abuse in opioid-dependent
individuals, but it is not clear whether this is caused by an action of methadone on the direct reinforcing properties of cocaine or on
cocaine seeking. Also, it is not clear whether high-dose methadone maintenance may induce behavioral side effects, which could limit its
clinical use. Here, we report that high-dose methadone maintenance (20-40 mg/kg/day) does not reduce, and even enhances cocaine
(10-30mg/kg, i.p.)-induced elevation in dopamine concentration in the ventral striatum measured by in vivo microdialysis. In parallel,
however, rats maintained on high-dose methadone (30 mg/kg/day) seek and consume significantly less cocaine than controls when tested
for intravenous cocaine (0.5 mg/kg/infusion) self-administration on a progressive ratio schedule of reinforcement. This reduction in
cocaine self-administration does not result from impaired sensory-motor functioning as rats maintained on high-dose methadone show
normal locomotor activity. Furthermore, the reduction in responding for cocaine does not seem to result from general behavioral deficits
as male rats maintained on high methadone doses respond normally to palatable food and thermal pain, although their sexual responses
to receptive females are greatly suppressed. Taken together, these results from studies in rats support the usefulness of larger doses of
methadone to reduce severe cocaine abuse in opioid-dependent individuals and possibly in the management of pure-cocaine addiction.
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INTRODUCTION

Two interesting issues arise when considering the evidence
that high-dose methadone maintenance can effectively
reduce cocaine use in opioid-dependent individuals (Stine
et al, 1991; Strain et al, 1993; Borg et al, 1999; Schottenfeld
et al, 2005; Peles et al, 2006a). First, clinical studies have not
determined whether the observed reductions in cocaine
intake are due to the effects of high methadone doses on the
direct reinforcing effects of cocaine or on cocaine seeking.
Second, although methadone maintenance at high doses
may effectively reduce cocaine intake, it may also produce a
range of undesired behavioral side effects which would limit
its clinical use.

With respect to the first issue, experimental studies in
humans and animals suggest that high-dose methadone
maintenance can reduce cocaine abuse not by altering its
acute reinforcing and stimulatory actions, but rather by
reducing cocaine seeking. In fact, patients maintained on
doses of methadone ranging between 50 and 100 mg/day
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report either no changes, or even increases, in subjective
reports of liking and stimulation induced by acute cocaine
administration (Foltin et al, 1995; Foltin and Fischman,
1996; Preston et al, 1996). In primates, methadone
maintenance has been shown to suppress cocaine self-
administration on a variety of reinforcement schedules, but
these effects have been attributed to impaired sensory-
motor functions (Negus and Mello, 2004) such as impaired
ability to initiate motor behavior toward the self-adminis-
tration lever. In rats, high-dose methadone maintenance
neither alters the stimulatory action of cocaine (Leri et al,
2004, 2006) nor reduces the intravenous self-administration
of cocaine on a continuous schedule of reinforcement (Leri
et al, 2006). However, rats maintained on high-dose
methadone show significant reductions in cocaine seeking
as indexed by reduced reinstatement of operant responding
after priming injections of cocaine (Leri et al, 2004), as well
as reduced formation and expression of cocaine-induced
place preference (Leri et al, 2006).

To explore further the basis of changes in cocaine-
induced behaviors brought about by methadone, we first
used in vivo microdialysis (Experiment 1) to assess the
effects of maintenance on high-dose methadone on eleva-
tions of extracellular dopamine in the ventral striatum
induced by acute injections of cocaine (Di Chiara and
Imperato, 1988; Koob and Nestler, 1997; Wise et al, 1995).



Having found that methadone actually enhances the
dopaminergic response to cocaine, we next studied its
effects on self-administration of cocaine on a progressive
ratio (PR) schedule of reinforcement (Experiment 2) to
determine whether the reinforcing effects of cocaine might
also be enhanced by high-dose methadone maintenance,
leading to the reduced responding seen previously on a
fixed ratio 1 schedule, but to greater responding when
cocaine is more difficult to obtain (Barr and Phillips, 1999;
Richardson and Roberts, 1996).

The other experiments reported in this paper were
designed to study the possible side effects of high-dose
methadone maintenance on responses of male rats to
receptive females (Experiment 3), palatable food (Experi-
ment 4), and painful stimulation and its modulation by
cocaine (Experiment 5). Loss of sex drive is a side effect
commonly reported by patients on methadone maintenance
(Daniell, 2002b; Fischer et al, 2002), but it is not clear
whether sexual dysfunctions result from a dose-dependent
pharmacological effect of methadone (Daniell, 2002a; de la
Rosa and Hennessey, 1996) or from preexisting hypogonad-
ism induced by heroin addiction (Mirin et al, 1980).
Another side effect reported by some methadone-main-
tained patients is general anhedonia (Fischer et al, 2002),
and in primates chronic exposure to methadone reduces
operant responding for palatable food (Negus, 2006; Negus
and Mello, 2004). However, because acute methadone can
have rate-suppressing effects on operant behavior (Macens-
ki et al, 1994; McMillan et al, 1980; Nader and Thompson,
1987, 1989), its effect on consumption of palatable food
needs to be examined using a test that does not involve
operant responding. Finally, there is evidence that indivi-
duals maintained on methadone for the management of
opiate addiction show hyperalgesia (Compton et al, 2000;
Doverty et al, 2001a,b). Most of these studies, however,
examined individuals with a history of dependence on illicit
opioids, and there are reasons to believe that some may
have been hyperresponsive to pain before methadone
treatment (Pud et al, 2006). Furthermore, although it is
well established that methadone-maintained individuals
require higher doses of acute opioid agonists for pain
control (Alford et al, 2006b; Scimeca et al, 2000), it has
never been established whether high methadone mainte-
nance produces cross-tolerance or enhances the analgesic
effect of cocaine (Lin et al, 1989; Waddell and Holtzman,
1999).

METHODS
Subjects

These experiments were performed in different institutions,
using different strains of rats (see below). All rats were
purchased from Charles River (St Constant, QC, Canada),
housed singly, and maintained on a reverse light-dark cycle
(0800 lights off; 2000 lights on) with free access to food and
water except during behavioral testing, which always
occurred during the dark cycle. Experimental procedures
were approved by the Animal Care Committees of the
universities where the work was conducted: the University
of Guelph and Concordia University. All experiments were
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carried out in accordance with the recommendations of the
Canadian Council on Animal Care.

Methadone Doses

The primary objective of these experiments was to provide a
profile of neurochemical and behavioral effects of high-dose
methadone maintenance in rats (methadone HCL, Phar-
mascience, Montreal, QC, Canada). In this species, we have
recently found that 30 mg/kg/day methadone delivered via
subcutaneously implanted osmotic minipumps vyields a
mean (+ SEM) plasma level of 489.3 (+27) ng/ml (unpub-
lished data collected in collaboration with Dr Y Zhou and
Dr M]J Kreek). In humans, a dose of 100 mg/day results in an
average daily concentration of about 240ng/ml (Kreek,
2000), but steady-state plasma concentrations above 420 ng/
ml appear to be necessary to reduce effectively cocaine
abuse in opioid-dependent individuals (Peles et al, 2006a).
Thus, in rats, 30 mg/kg/day closely corresponds to the high
end of therapeutic dosages used for the management of
opiate addiction (Dole, 1988; Maxwell and Shinderman,
1999) with concurrent cocaine dependence.

In Experiment 1, a wide range of methadone doses (20,
30, and 40mg/kg/day) was employed to detect possible
synergistic interactions between methadone maintenance
and acute cocaine administration on extracellular dopamine
concentration in the ventral striatum. In the other experi-
ments (except Experiment 3, see below), a single dose of
30 mg/kg/day was used because this methadone dose has
been previously shown to (1) increase locomotor activity,
(2) block cocaine-induced reinstatement of cocaine seeking,
(3) block formation and expression of cocaine place
conditioning, (4) not alter cocaine self-administration on
a continuous schedule of reinforcement, and (5) not alter
stress-induced reinstatement of cocaine seeking (Leri et al,
2004, 2006).

Surgery

Osmotic minipumps. Methadone maintenance was
achieved by implanting osmotic minipumps subcutaneously
(Alzet model 2ML2, 0.51/h for 14 days, Durect Corporation,
Cupertino, CA, USA). Isoflurane (Pharmaceutical Partners
of Canada Inc., Richmond Hill, ON, Canada) was used to
anaesthetize the rats and a small incision between the
scapulae was made in the skin. Subcutaneous connective
tissues were spread apart using a hemostat to make a small
pocket for the pump. Osmotic pumps were placed into the
pocket with flow moderator directed away from the
incision. Wound clips kept the incision closed. An identical
procedure was carried out for the animals receiving sham
surgery. Using the same protocol for anesthesia, the pumps
were removed upon completion of the delivery duration.

Intravenous self-administration. Rats were surgically
implanted with intravenous silastic catheters (Dow Corning,
Midland, MI, USA) in the right jugular vein, under general
anesthesia induced by a combination of sodium pentobar-
bital (18.5mg/kg i.p., MTC Pharmaceutical, Cambridge,
ON, Canada), morphine (5mg/kg s.c., Ontario Veterinary
College, Guelph, ON, Canada) and diazepam (1 mg/kg s.c.,
Sabex Inc., Boucherville, QC, Canada). Rats were given
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atropine sulfate (4.5 mg/kg s.c., Ontario Veterinary College,
Guelph, ON, Canada) just before surgery and Depocillin
(3000001IU, 0.1 ml/rat IM, Intervet Canada, Whitby, ON,
Canada) immediately after surgery. The catheter was
secured to the vein with silk sutures and was passed
subcutaneously to the top of the skull where it exited into a
connector (a modified 22-gauge cannula; Plastics One,
Roanoke, VA, USA) mounted to the skull with jeweler’s
screws and dental cement. A plastic blocker was placed over
the opening of the connector when not in use. Catheters
were flushed daily with saline and every second day with
0.1ml of a saline-heparin solution (0.2 mg/ml Hepalean
1000IU, Organon, Toronto, ON, Canada). Animals were
allowed 6 days of recovery after surgery before testing.

Intracranial cannulation. For the microdialysis experi-
ment, bilateral guide cannulas (22 gauge; Plastics One,
Roanoke, VA, USA)—aimed at the nucleus accumbens—
were implanted under sodium pentobarbital anesthesia
(65mg/kg i.p., MTC Pharmaceutical, Cambridge, ON,
Canada). Just before surgery, rats were given atropine
sulfate (0.6 mg/ml; 0.3 ml/rat s.c., MTC Pharmaceutical,
Cambridge, ON, Canada). With the arm of the stereotaxic
inclined at a 10° angle, the following coordinates were used:
AP + 1.6 mm, ML +2.8 mm, and DV —5.5 mm (Paxinos and
Watson, 2005). Animals were allowed at least 8 days of
recovery after surgery before testing.

Ovariectomy. Females were ovariectomized bilaterally
through lumbar incisions under general anesthesia induced
by ketamine hydrochloride (50 mg/kg, i.p.) and xylazine
hydrochloride (4mg/kg, i.p.) mixed in a ratio of 4:3,
respectively. All females were given 1 week of postsurgical
recovery and maintained for the duration of the experiment
on hormone replacement by subcutaneous injections of
estradiol benzoate (10 g in 0.1 ml of sesame oil) 48 h and
progesterone (500 g in 0.1 ml of sesame oil) 4h before
testing.

Histology

At the end of the microdialysis experiment, animals were
perfused transcardially with saline and formaldehyde
(formalin 10% (v/v); Anachemia, Montreal, QC, Canada)
under sodium pentobarbital anesthesia. Brains were re-
moved and fixed in formaldehyde for at least 24h before
sectioning. Brains were sectioned at 30 um, and every third
section through the ventral striatum was mounted and
stained with Cresyl Violet. Data from individual subjects
were discarded if the microdialysis probe was positioned
beyond the boundaries of the intended site.

Apparatus

Intravenous self-administration. Each of the 20 Plexiglas
operant chambers (model ENV-008CT, Med Associates,
Lafayette, IN, USA) was enclosed in larger sound-attenuat-
ing plywood chambers (model ENV-018M, Med Associates).
Each operant box had a house light (28 V) and two levers:
one retractable and one stationary, located 10 cm apart and
8 cm above the floor of the box. The retractable lever (active
lever) was connected to an infusion pump for the delivery of
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drugs (Razel Scientific Instruments, Stamford, CT, USA),
positioned outside the sound-insulating chamber. The
stationary lever served to control for baseline, non-
reinforced operant behavior; pressing this lever had no
consequence (inactive lever), but all presses were recorded.
A white-light (28 V) stimulus located 3 cm above the active
lever was illuminated for 30s at the beginning of the
session, and for the duration of each drug infusion (5s),
serving as a discrete stimulus for drug delivery.

Locomotion. Locomotor activity was monitored using 12
chambers (30 x 40 x 26 cm, custom made, University of
Guelph, Gulph, ON, Canada) made of dark gray PVC. The
entire set of chambers was located in the center of the floor
of a laboratory room and covered with black wire mesh to
allow video tracking of the rats during testing. The tracking
software used was EthoVision (version 3, Noldus Informa-
tion Technology, The Netherlands).

Microdialysis. Microdialysis was conducted in four hex-
agonal chambers (42 x 39 x 33.5cm, custom made, Con-
cordia University, Montreal, QC, Canada) built from
Plexiglas with wooden ceilings and stainless steel grid
floors. The cages were individually housed in wooden
cubicles and lighting was provided on a reverse cycle by
overhead lights.

The dialysis probes consisted of a 2.5 mm length of semi-
permeable dialysis membrane (Fisher Scientific, 240 pm OD,
13000 MW cutoff), closed at one end and attached to a
21 mm long, 26-gauge stainless steel tubing. A 40-50-cm-
long piece of PE tubing connected the other end of the
stainless steel shaft to a single channel liquid swivel
stationed above the testing chamber that was, in turn,
connected to a variable speed infusion pump. Small-
diameter fused silica tubing extended internally through
the probe with one end resting 0.5 mm from the tip of the
probe and the other end exiting the PE tubing 5-8 cm above
the stainless steel shaft. The probe was secured in place by
stainless-steel collars that were screwed onto the guide
cannula. The external length of the PE tubing was protected
from chewing by steel spring casing. The probes were
inserted the day before the beginning of microdialysis
testing. To prevent occlusion, artificial cerebral spinal fluid
(CSF: 145mM Na*,2.7mM K*, 1.2mM Ca**, 1.0mM Mg* ™,
150 mM Cl, 0.2 mM ascorbate, 2 mM Na,HPO,, pH 7.4 +0.1)
was perfused overnight at a rate of 0.03 pl/min.

A 10pl volume of dialysate was extracted from each
sample and analyzed immediately on the high-performance
liquid chromatography systems with electrochemical detec-
tion (HPLC-EC). The dialysate analysis has been described
previously (Sorge et al, 2005). Briefly, dopamine and
metabolites (dihydroxyphenylacetic acid (DOPAC) and
homovanillic acid (HVA) and 5-hydroxyindole acetic acid
(HIAA)) were measured simultaneously on one of the two
systems and were adjusted to allow for the separation and
quantification of dopamine, DOPAC, HVA, and HIAA in a
single run. The peaks obtained for dopamine, DOPAC,
HVA, and HIAA were integrated and quantified by
EZChrom Chromatography Data System (Scientific Soft-
ware Inc., San Ramon, CA, USA).



Bi-level chambers. Six custom-made (Concordia Univer-
sity) bi-level chambers were constructed of Plexiglas
(outside dimensions of 18 x 25 x 65cm) with a platform
(40 cm in length) elevated by a set of ramps at each end
dividing the chamber into two levels (for further details see
Pfaus et al, 1990).

Food consumption chambers. Six custom-made (University
of Guelph) dark gray PVC boxes were used to test for
consumption of highly palatable food. In our laboratory,
this apparatus is employed normally for place-conditioning
experiments. The boxes are located in the center of the
laboratory room and are comprised of three compartments:
two large (30 x40 x26cm) and one smaller, middle
(23 x 30 x 26 cm) compartment. Removable inserts, with
or without small archway openings (10 x 10 cm), form the
central compartment. Food cups (ceramic dishes) were
secured in one corner of each large compartment, opposite
to the archway openings. The entire set of chambers was
covered with black wire mesh to allow video tracking of the
rats during testing. The tracking software used was
EthoVision (version 3, Noldus Information Technology,
The Netherlands).

Hot plate. Analgesia was assessed using a hot plate
apparatus (Model 58725, Stoelting Co., Wood Dale, IL,
USA). The heated surface (22 x 22 cm) was maintained at
5040.2°C.

Procedures

Experiment 1: effect of high-dose methadone maintenance
on basal and cocaine-stimulated dopamine concentra-
tions in the ventral striatum. The procedures used were
similar to those reported previously by Sorge et al (2005).
Different groups (n=4-12) of male Long-Evans rats (350-
375g) were used for each dose of methadone (0, 20 and
40 mg/kg/day) and each dose of cocaine (10, 20 or 30 mg/kg,
i.p.). The same doses of cocaine were used in previous
studies examining interactions with buprenorphine (Sorge
et al, 2005). An additional group of rats (n=9) was
maintained on 30 mg/kg/day and challenged with 20 mg/kg
cocaine because this dose combination was employed in our
previous methadone-cocaine experiments. Osmotic mini-
pumps were implanted 3 days before insertion of micro-
dialysis probes (usually 1500-1600). Dialysate sampling
began the next morning at 900. The dialysate flow rate was
increased to 0.7 pl/min, and baseline dialysate samples
(approximately 14 ul) were collected every 20min and
analyzed immediately. Once stability of dopamine was
achieved (less than 10% variation in three consecutive
samples), rats were injected with cocaine and samples were
collected at 20-min intervals for 140 min. Food was removed
from the chambers before sampling, but a water drinking
tube was available throughout.

Experiment 2: effect of high-dose methadone maintenance
on cocaine self-administration on a PR schedule of
reinforcement. Fourteen Sprague-Dawley male rats (300-
350 g) were initially trained to self-administer 0.5 mg/kg/
infusion cocaine (Cocaine HCL, Dumex, Toronto, ON,
Canada) for five consecutive daily sessions, each lasting 3 h.
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The same dose of cocaine has been used in previous
experiments employing Sprague-Dawley male rats to
investigate the effect of methadone maintenance on cocaine
self-administration on a continuous schedule of reinforce-
ment and on cocaine-seeking behavior (Leri et al, 2006).

For each self-administration session, rats were placed in
the chambers and their connector was attached to the
infusion line. Each session started with the activation of
the house light, the entry of the retractable lever and the
illumination of the light stimulus for 30s. Subsequently,
lever-presses on the active lever led to drug infusions
according to a fixed ratio 1 (FR1) schedule of reinforce-
ment. Cocaine was infused at a volume of 150 pl over a 5-s
period, and during this period, the light stimulus was
illuminated. Responses on the active lever made during the
infusion were recorded, but did not lead to further
infusions. Drug concentration was adjusted for differences
in body weight.

Following the last session of acquisition of self-adminis-
tration (ie, FR1 5), rats were implanted with osmotic
minipumps filled either with vehicle (n=6) or 30 mg/kg/
day methadone (n=38), and after a 5-day recovery period,
they received a 2-h test of locomotor activity. Twenty-four
hours after this test, self-administration for the same dose of
cocaine resumed using a PR schedule of reinforcement.
In this schedule, response requirements escalated through
steps calculated by the following equation: response
ratio = (5¢(0-2 x infusion numben)y 5 qunded to the nearest
integer. Animals were tested under these conditions for 4
consecutive days, in 3-h long sessions.

Experiment 3: effect of high-dose methadone maintenance
on male sexual behavior. Thirty sexually experienced
Long-Evans male rats (600-700 g) were randomly assigned
to three groups receiving pumps filled with vehicle, 10 or
30 mg/kg/day methadone, although one rat from the high-
methadone group was subsequently removed because of
poor health. After 5 days of recovery from methadone-
pump implantation, each male rat was introduced in the
bi-level chamber followed by the introduction of a sexually
receptive and experienced female, 5min later. Subsequent
male sexual behavior was videotaped for 30 min. During this
period, frequency of the following behaviors was recorded
(1) appetitive level changes (number of level changes in the
5-min period before the introduction of the female), (2)
pursue level changes (number of level changes during
pursue of the female), (3) genital investigation, (4) mounts,
(5) intromissions, and (6) ejaculations. Eight days later, the
minipumps were removed, and rats received two additional
tests 24 h (early withdrawal) and 14 days (late withdrawal)
after pump removal.

Experiment 4: effect of high-dose methadone maintenance
on consumption of palatable food. The 24 Sprague-Dawley
male rats (300-350 g) used in this experiment were not food
deprived. Because of this, food pre-exposure sessions were
given to establish reliable food consumption within the
limited time period of the test.

The experiment began with a session of habituation to the
entire apparatus. On this day, the inserts with openings
were used, and rats had free access to the three compart-
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ments for 20 min. Then, rats received 5 consecutive days of
food exposure training. Each day, the inserts with openings
were replaced with solid inserts, and rats were confined for
30 min in one of the two large compartments (a.m. session:
between 1130 and 1230). At least 4 h later, the same animal
was confined to the alternate large compartment for another
30 min (p.m. session: between 1630 and 1830). Ten rings of
froot-loop cereal were placed in the ceramic dish within one
compartment only. The specific compartment chosen to
contain food was counterbalanced across rats. In addition,
the time of food session (AM or PM) was counterbalanced
across rats and, for each rat, across days of training. Three
days after the last exposure session, 12 rats received sham
surgery whereas 12 rats received minipumps dispensing
30 mg/kg/day methadone. Finally, 5 days after surgery, rats
were tested for food consumption. During this test, rats had
access to the entire apparatus and 10 froot-loops were
placed in the appropriate food compartment. The pumps
were removed 8 days later to verify the effect of methadone
withdrawal on body weight.

Experiment 5: effect of high-dose methadone maintenance
on basal and cocaine-induced analgesia. An initial study
was carried out in 30 Sprague-Dawley male rats (300-350 g)
to establish baseline latency in the hot-plate test. Time to
lick one hind paw was used as the end point (Carter, 1991).
In the subsequent methadone experiment, the cutoff latency
to prevent tissue damage was 3 times that observed in rats
tested without treatment (Franklin and Abbott, 1989).

In the methadone experiment, 17 Sprague-Dawley male
rats (300-350g) were assigned to two groups receiving
either vehicle-filled minipumps (n=38) or 30mg/kg/day
methadone minipumps (n=9). Five days after implanting
the minipumps, all rats received the first test of baseline
analgesia 20 min after an injection of vehicle (saline, i.p.).
Three days later, a second test of analgesia was adminis-
tered 20 min after an injection of 5 mg/kg cocaine (i.p.) and,
3 days later, a final test was administered 20 min after an
injection of 20 mg/kg cocaine (i.p.). These two doses of
cocaine have been found to produce minimal and maximal
analgesia in male Sprague-Dawley rats (Lin et al, 1989;
Waddell and Holtzman, 1999). All tests were carried out
between 1600 and 1700. The pumps were removed 3 days
after the last test to verify the effect of methadone
withdrawal on body weight.

Statistical analyses. One- and two-factor ANOVAs with
independent and repeated measures were used as appro-
priate for the design of each experiment. In case of
significant interactions or significant main effects, multiple
comparisons were performed using the Newman-Keuls
method to identify individual mean differences (¢ =0.05).
The specific values of negative findings are not reported. All
statistical analyses were performed using SigmaStat (version
3.0 for Windows, SPSS Inc.).

RESULTS

Experiment 1

Histological analysis revealed that the probes were located
in the medial nucleus accumbens, encroaching on both the
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shell and the core region, and in some cases, in the dorsal
striatum. The functional tip of the probe (ie, 2.5 mm long),
however, was confined to the ventral striatum in all cases
(see Figure 1 for 26 rats with near identical probe locations,
n=10, 5, 7, and 4 for 0, 20, 30, and 40mg/kg/day
methadone, respectively).

Basal levels of dopamine within the ventral striatum were
measured in four consecutive samples before injections
of cocaine. Although there was no significant effect of
methadone dose on basal dopamine levels, there was a trend
(see Figure 2a; (F(3,22) =2.5, p=0.09)). Post hoc analysis
revealed that the basal dopamine level for the rats with
vehicle-filled minipumps was significantly different from
that of rats with 30 mg/kg/day methadone minipumps
(p<0.05). Thus, methadone had a small dose-dependent
effect on basal dopamine levels.

Methadone enhanced the dopamine response to acute
injections of cocaine in the ventral striatum except at the
highest dose of cocaine (see Figure 2b-d). As not all doses
of cocaine were tested with every dose of methadone,
separate ANOVAs were performed for each dose of cocaine.
For the 10 mg/kg dose of cocaine (panel b; n =4, 4, and 6 for
the 0, 20, and 40 mg/kg/day of methadone, respectively), the
ANOVA revealed significant main effects of methadone
dose (F(2,11)=6.2, p<0.05) and postinjection time
(F(6,66) =29.3, p<0.001). Post-hoc analysis revealed that
the dopamine response to cocaine was significantly greater
in the 40 mg/kg methadone group than in either 20 mg/kg/
day or vehicle group (ps<0.05). At 20mg/kg dose of
cocaine (panel ¢; n=12, 8, 9, and 8 for 0, 20, 30 and
40 mg/kg/day doses of methadone, respectively), the
ANOVA revealed significant main effects of methadone
dose (F(3,33) =3.9, p<0.05), postinjection time (F(6,198) =

¢ +1.6 mm

Figure | Verified location of microdialysis probe implanted in the ventral
striatum, plotted on drawings for coronal sections from the atlas of Paxinos
and Watson (2005).
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Figure 2 (a) Mean (SEM) basal dopamine concentrations sampled in the
nucleus accumbens of rats chronically exposed to different doses of
methadone released by osmotic minipumps implanted subcutaneously. The
* indicates a significant difference from the 0 mg/kg/day methadone group.
(b—d) Mean (SEM) percent increase in dopamine concentration in the
ventral striatum caused by cocaine injections (i.p.) given to rats maintained
on vehicle and different methadone doses. The * indicates a significant
difference between rats maintained on 40 mg/kg/day methadone and
vehicle. The *#* indicates a significant difference between rats maintained on
30 and 40 mg/kg/day methadone and rats maintained on vehicle.

60.9, p<0.001), and a significant methadone dose by
postinjection time interaction (F(18,198)=2.1, p<0.01).
Post-hoc tests revealed that the dopamine response was
greater in the 40 and 30 mg/kg/day methadone groups than
in the vehicle group (ps <0.05). Only at the highest dose of
cocaine given (30 mg/kg, panel d; n=6, 5, and 5 for 0, 20,
and 40 mg/kg/day, respectively) was there no effect of
methadone. The ANOVA revealed a significant main effect
of postinjection time only (F(6,78) =22.9, p<0.001).

Experiment 2

During the acquisition of cocaine self-administration, rats
displayed significant increases in responding on the active
lever compared with significant decreases in responding on
the inactive lever (data not shown; Session by Lever
interaction (F(4,52)=7.1, p<0.001) and main effect of
Lever (F(1,13)=5.2, p<0.05). Along with increases in
responding on the active lever, number of cocaine infusions
also increased significantly (data not shown; (F(4,52) =6.8,
p<0.001)).
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Following implantation of osmotic minipumps, it was
found that methadone-maintained rats showed a higher
level of locomotion (mean+ SEM =20464.1 +2144.4) than
the vehicle-maintained rats (mean+SEM =15421.9+
1442.5), but this difference was not significant (p=0.09).
In self-administration, methadone maintenance had a
substantial impact on PR responding for cocaine
(Figure 3a; Group by Session interaction (F(4,48)=6.3,
p<0.001), main effect of Group (F(1,12)=7.1, p<0.05)],
and main effect of Session (F(4,48)=6.6, p<0.001)). In
fact, as a result of implementation of this schedule,
methadone-maintained rats showed no increase in respond-
ing from the last day of self-administration on FR1 before
pump implantation (FR1 (5)) to the first PR session after
pump implantation (PR (1)). Moreover, in comparison to
vehicle rats, methadone-maintained rats showed signifi-
cantly lower levels of responding on each PR session.
Similarly, although the implementation of the PR led to
significant decreases in cocaine intake in both groups,
methadone-maintained rats obtained significantly fewer
infusions of cocaine than the vehicle-treated rats on each
PR session (Figure 3b; main effect of Group (F(1,12) =5.1,
p<0.05) and main effect of Session (F(4,48)=38.5,
p<0.001)).

Experiment 3

In this experiment, it was observed that most aspects of
male sexual behavior were suppressed during methadone
maintenance in a dose-dependent manner. Some behaviors
returned to normal ranges within 24h of pump removal,
and all aspects of sexual behavior recovered by 10 days
of withdrawal from methadone. Thus, as it can be seen
in Figure 4, the frequency of appetitive level changes
was significantly suppressed in animals maintained on
the highest methadone dose, and returned to control
levels on the subsequent tests during early and late
withdrawal (Group by Drug exposure interaction
(F(4,52)=3.1, p<0.05), and main effect of Drug exposure
(F(2,52)=8.6, p<0.001)). Very similar findings were
observed for frequencies of pursuit (significant main effect
of Group (F(2,26)=4.8, p<0.05) and Drug exposure
(F(2,52)=8.2, p<0.001)), mounts (significant main effect
of Group (F(2,26)=4.6, p<0.05) and Drug exposure
(F(2,52)=23.5, p<0.001)), intromissions (data not
shown; significant Group by drug exposure interaction

(F(4,52)=11.2, p<0.001), main effect of Group
(F(2,26)=22.6, p<0.001), and main effect of Drug
exposure (F(2,52)=3.6, p<0.05)), and ejaculations

(data not shown; significant Group by Drug exposure
interaction (F(4,52) =17.5, p<0.001), main effect of Group
(F(2,26) =9.5, p<0.001), and main effect of Drug exposure
(F(2,52)=17.6, p<0.001)). The only aspect of male sexual
behavior that was not significantly reduced by methadone
maintenance was frequency of genital investigation (only
a significant effect of Drug exposure (F(2,52)=15.2,
p<0.001)).

Experiment 4

There was no difference in the number of froot-loops
consumed by non-food-deprived control rats (mean+
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Figure 3 (a) Mean (SEM) responses emitted by rats implanted with

vehicle- and methadone-filled minipumps on the last day of cocaine
(0.5 mg/kg/infusion)  self-administration on a continuous schedule of
reinforcement (FRI (5)), and on the four subsequent sessions of cocaine
(same dose) self-administration on a PR schedule. (b) Mean (SEM) infusions
in the same rats, under the same conditions. The # indicates significant
within-group differences from the last day of self-administration on a
continuous schedule of reinforcement (FRI (5)). The * indicates a
significant difference between rats maintained on 30 mg/kg/day methadone
and rats maintained on vehicle.

SEM = 6.6 4 1.2) and methadone-maintained rats (6.8 4+0.7).
This lack of effect of methadone maintenance on consump-
tion of palatable food cannot be attributed to faulty
operation of the methadone-filled minipumps as a sig-
nificant loss of body weight was observed 24h after
their removal (data not shown; Group by Time interaction
(F(1,22) =190.5, p<0.001), main effect of Group (F(1,22) =
37.7, p<0.001), and main effect of Time (F(1,22)=132.1,
p<0.001)).

Experiment 5

Methadone maintenance at 30 mg/kg/day for 5 days did not
affect the latency to lick the hind paws on the hot-plate; that
is, methadone maintenance did not induce analgesia or
hyperalgesia in this test. In fact, the ANOVA revealed no
differences in latencies between rats that did not receive
pump surgery (mean+SEM =24.3+2.1), rats implanted
with pumps containing vehicle (see Figure 5), and rats on
methadone (see Figure 5). Similarly, although cocaine dose
dependently increased paw-lick latency, there was no effect
of methadone treatment: the ANOVA revealed a significant
effect of Test (F(2,30) =20.6, p<0.001), but no group effect.
As shown in Figure 5, 20 mg/kg cocaine significantly elevated
response latencies over baseline whereas 5 mg/kg cocaine had
no effect, and this effect was equivalent in the two groups.
This lack of effect of methadone maintenance on basal and
cocaine-induced analgesia cannot be attributed to faulty
operation of the methadone-filled minipump as a significant
loss of body weight was observed 24h after the removal of
methadone-filled minipumps (data not shown; Group by
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Figure 4 Mean (SEM) frequency of sexual behaviors displayed by male
rats during the maintenance on 0, 10 or 30 mg/kg/day methadone, 24 h
after pump removal (early withdrawal) and 10 days after pump removal
(late withdrawal). The * indicates a significant difference between rats
maintained on methadone and rats maintained on vehicle.
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Figure 5 Mean (SEM) latency to lick the hind paws on the hot plate in
rats implanted with vehicle- and methadone-filled minipumps after an
injection of saline (baseline) or 5 and 20 mg/kg cocaine (i.p.). The * indicates
significant within group differences from baseline latencies.

Time interaction (F(1,15)=75.0, p<0.001), main effect of
Group (F(1,15)=116.2, p<0.001), and main effect of Time
(F(1,15)=152.7, p<0.001)).



DISCUSSION

In these experiments performed in rats, it was found that
maintenance on high doses of methadone reduced both self-
administration of cocaine on a PR schedule, as well as the
sexual responses of male rats to estrous females. Methadone
did not, however, reduce the consumption of highly
palatable food in non-deprived animals, alter pain re-
sponses to thermal stimulation or affect cocaine-induced
analgesia. In tests of the acute effects of cocaine on the levels
of extracellular dopamine in the ventral striatum, it was
found that maintenance on high doses of methadone
enhanced the responses to low doses of cocaine, but were
without affects at the highest dose of cocaine. Finally,
although there was no evidence that dopamine responses to
cocaine were reduced, there was some evidence that
maintenance on high doses of methadone increased basal
levels of dopamine within the ventral striatum.

Heavy cocaine use at admission in methadone-main-
tenance programs is a significant predictor of continued
cocaine use and of poor retention in treatment (Marsch
et al, 2005). However, at doses above 100 mg/day, metha-
done maintenance is efficacious in reducing cocaine use
(Maxwell and Shinderman, 1999; Stine et al, 1991; Peles
et al, 2006a) and in promoting long-term (ie, 11 months)
retention in treatment (Peles et al, 2006b). Our studies in
laboratory rats suggest that this reduction in cocaine use
can result from a pharmacological action of high-dose
methadone maintenance on cocaine seeking. In fact, during
cocaine self-administration on a PR (Experiment 2), it was
found that rats maintained on 30 mg/kg/day methadone
failed to adjust to the increased work requirement to obtain
drug infusions and, as a result, obtained significantly less
cocaine than control animals. These results are consistent
with previous findings from our laboratories showing that
rats maintained on doses of methadone above 20 mg/kg/day
do not respond for cocaine-conditioned cues, do not
approach a cocaine-conditioned environment, and do not
show reinstatement of cocaine seeking after priming
injections of cocaine (Leri et al, 2004, 2005, 2006). It is
important to note that methadone-induced blockade of
cocaine seeking observed in our experiments is not an
artifact of impaired sensory-motor functioning. In fact, rats
tested in Experiment 2 displayed normal locomotor activity
and those tested in our previous experiments showed no
reduction of cocaine self-administration on a continuous
schedule of reinforcement, and showed significant rein-
statement of heroin and cocaine seeking after exposure to
foot-shock stress (Leri et al, 2004, 2006).

Interestingly, it was found that methadone maintenance
did not attenuate the rise in extracellular dopamine levels in
the ventral striatum induced by acute cocaine injections. If
anything, we observed a potentiation of this response,
which is not surprising in light of known synergistic
interactions between opiates and cocaine on the dopamine
system (Brown et al, 1991; Hemby et al, 1999; Martin et al,
2006; Zernig et al, 1997). Furthermore, this effect of
methadone was very similar to the effect of buprenorphine
maintenance on cocaine-induced elevations in extracellular
dopamine recently reported by Sorge et al, 2005 and Sorge
and Stewart, 2006. Taken together, these results provide
some support for the hypothesis that chronic maintenance
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on mu-opioid receptor agonists does not reduce, and can
even enhance, some behavioral (Foltin et al, 1995; Foltin
and Fischman, 1996; Leri et al, 2006; Preston et al, 1996)
and neurochemical indexes of reinforcing effects of cocaine
(Di Chiara and Imperato, 1988; Koob and Bloom, 1988;
Wise and Bozarth, 1981).

There are a number of possible neurochemical mechan-
isms that could account for the effect of high-dose
methadone maintenance on cocaine seeking. It is possible
that the tonic elevation in basal levels of dopamine induced
by methadone maintenance impaired the ability of this
system to respond phasically to cocaine-related cues
(Floresco et al, 2003; Gratton and Wise, 1994; Phillips
et al, 2003), and thus compromised initiation and/or
maintenance of motor behaviors directed toward these cues
(Mogenson et al, 1980).

Alternatively, chronic maintenance on mu-opioid recep-
tor agonists may have interfered with the development,
maintenance or expression of cocaine-induced neural
changes that promote cocaine seeking. Although cocaine
exposure induces significant alterations in several neuro-
chemical systems (Everitt and Wolf, 2002; Kalivas et al,
2005; Koob and le Moal, 2001; Kreek, 2001; Nestler, 2001;
Robbins and Everitt, 2002; Robinson and Berridge, 2003;
Self, 2004; Shaham and Hope, 2005; Stewart, 2003), our most
recent work has focused on mu-opioid receptors. In fact, we
have reported that rats maintained on high-dose methadone
maintenance show no cocaine-place preference and no
cocaine-induced up-regulation of mu-opioid receptor
mRNA in the nucleus accumbens core (Leri et al, 2006).
This is notable because the effect of cocaine exposure on
mu-opioid receptor density and function in mesocortico-
limbic areas (Azaryan et al, 1996; Unterwald et al, 1992;
Unterwald, 2001; Yuferov et al, 1999) has been associated to
the intensity of cocaine cravings in humans (Gorelick et al,
2005; Zubieta et al, 1996), and to a variety of behavioral,
electrophysiological and neurochemical responses to co-
caine in animals (Mathon et al, 2005a, b, 2006; Tang et al,
2005; Hummel et al, 2006).

The results of the other experiments included in this
report indicate that rats maintained on high-dose metha-
done did not suffer from general behavioral impairments.
In fact, even if not food deprived, they displayed normal
approach and normal consumption of highly palatable food.
However, sexual behavior was negatively affected by high-
dose methadone maintenance. In fact, although sexually
well experienced in the testing apparatus, male rats showed
no conditioned excitement in anticipation to the arrival of
the receptive female (Mendelson and Pfaus, 1989). Likewise,
after the introduction of the female, male rats maintained
on methadone showed no species-specific behaviors neces-
sary for copulation such as pursue and mounting (Pfaus
et al, 1990). Although this experiment did not identify the
mechanism(s) by which methadone maintenance produced
these impairments (Agmo and Paredes, 1988; Band and
Hull, 1990; Ceccarelli et al, 2006; Cicero et al, 1975, 1976;
Pfaus and Gorzalka, 1987; Rodriguez-Manzo et al, 2002;
Tokunaga et al, 1977), the data clearly indicate that sexual
dysfunctions observed in methadone-maintained indivi-
duals (Daniell, 2002b; Fischer et al, 2002) can result from a
direct pharmacological effect of methadone (Bliesener et al,
2005; Daniell, 2002a; de la Rosa and Hennessey, 1996).
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Maintenance on methadone has also been associated with
enhanced responses to pain. In fact, there is evidence
supporting increased sensitivity to experimental pain in
patients receiving opioid agonist therapy (Alford et al,
2006a; Compton et al, 2000; Doverty et al, 200la). In
Experiment 5, rats arbitrarily assigned to groups and tested
after being on a high dose of methadone or vehicle for 5
days, showed no differences in latencies of responding to
painful thermal stimulation. In these rats, therefore, we
noted rapid development of tolerance (Adams and Holtz-
man, 1990), but not hyperalgesia. Furthermore, rats tested
in Experiment 5 showed unaltered analgesic response to
acute injections of 5 and 20 mg/kg cocaine leading to the
conclusion that, unlike acute administration (Misra et al,
1987; Zavala et al, 2003), steady-state methadone exposure
does not potentiate the acute analgesic effect of cocaine.

In summary, our studies in laboratory rats show that
high-dose methadone maintenance effectively reduced
cocaine seeking without reducing the effect of cocaine on
dopamine overflow in the ventral striatum, and without
producing generalized behavioral impairments. Overall,
such results in animals support the usefulness of high-dose
methadone as a pharmacological tool to reduce severe
cocaine abuse in opioid-dependent individuals, and possi-
bly in the management of pure-cocaine addiction.
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