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Human embryonic stem cells (hESCs) can proliferate indefinitely yet also differentiate in vitro, allowing normal human neurons to be

generated in unlimited numbers. Here, we describe the development of an in vitro neurotoxicity assay using human dopaminergic

neurons derived from hESCs. We showed that the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+), which produces

features of Parkinson’s disease in humans, was toxic for hESC-derived dopaminergic neurons. Treatment with glial cell line-derived

neurotrophic factor protected tyrosine hydroxylase-positive neurons against MPP+ -induced apoptotic cell death and loss of neuronal

processes as well as against the formation of intracellular reactive oxygen species. The availability of human dopaminergic neurons,

derived from hESCs, therefore allows for the possibility of directly examining the unique features of human dopaminergic neurons with

respect to their responses to pharmacological agents as well as environmental and chemical toxins.

Neuropsychopharmacology (2006) 31, 2708–2715. doi:10.1038/sj.npp.1301125
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INTRODUCTION

In vitro models provide important tools for the investiga-
tion of molecular and biochemical mechanisms involved in
toxic processes, cellular differentiation, and developmental
regulation. Because cells can be readily manipulated in
vitro, cell lines and other cell preparations can be used in
studies that are difficult or impossible to perform in intact
animals including human subjects. The utility of in vitro
models is, nevertheless, related to the accurate representa-
tion of the in vivo systems that they are purported to mimic.
Often, because of convenience, availability, and consistency
between preparations, immortal cell lines rather than
primary cell cultures are employed for in vitro toxicity
studies. There are, however, few cell lines that can serve as

accurate in vitro models of neurons, and especially human
central nervous system (CNS) neurons.
Because normal mature neurons do not generally divide

and are thus not readily maintained in vitro, human
neurons present great challenges for the development of
adequate in vitro model systems. These difficulties have led
to the use of substitute cell types such as tumor cells that
express neuronal properties. Examples of them include
PC12 cells, which were derived from a pheochromocytoma
(Greene and Tischler, 1976), and SH-SY5Y cells, which were
generated from a human neuroblastoma (Biedler et al,
1973). Ntera2, a human teratocarcinoma cell line that is
readily maintained in vitro and can be differentiated into
CNS neuronal phenotypes including dopaminergic neurons
(Misiuta et al, 2003; Schwartz et al, 2005), has also
been used. Nonetheless, these cell types have genetic
differences from normal cells, and physiologically may
diverge from normal cells in various respects. Primary cell
cultures that more accurately represent normal neurons can
be inconsistent from batch to batch. In addition, primary
cultures of human neurons, and particularly human
neurons with specific phenotypes such as dopaminergic
neurons, are extremely difficult to obtain, as fetal tissue
must be used.
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The availability of human embryonic stem cells (hESCs),
and methods for in vitro differentiation of neurons,
including dopaminergic neurons, from hESCs allows
for the possibility of generating human CNS neurons
with essentially normal properties in unlimited quantities
in vitro (Buytaert-Hoefen et al, 2004; Perrier et al, 2004;
Thomson et al, 1998; Yan et al, 2005; Zeng et al, 2004a).
This has the potential to lead to in vitro models with much
greater accuracy for representation of human CNS neurons,
and thus for the investigation of issues such as neuropro-
tection. Neurotoxicity and neuroprotective strategies are
particularly important with respect to Parkinson’s disease
(PD), a neurodegenerative disease caused by the selective
loss of dopaminergic neurons in the midbrain. Epidemio-
logical data and twin studies suggest that environmental
toxins may be important contributors to PD (Di Monte
et al, 2002; Di Monte, 2003; Tanner et al, 1999). The
dopaminergic neurons of the brain seem to be especially
vulnerable to toxic events, as evidenced by their suscept-
ibility to toxic insults, including rotenone, paraquat, and
manganese (Betarbet et al, 2000; Thiruchelvam et al, 2000),
lipopolysaccharides (Carvey et al, 2003; Gayle et al, 2002),
diesel exhaust particles (Block et al, 2004) and N-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Davis et al,
1979; Langston et al, 1983). Therefore, an in vitro system
for studies of neurotoxicity and neuroprotection in normal
human dopaminergic neurons may be especially valuable.
In the present study, we developed an in vitro hESC

model to study the neurotoxicity of 1-methyl-4-phenyl-
pyridinium (MPP+), an oxidative metabolite of neurotoxin
MPTP, which is specific for dopaminergic neurons. This
hESC-based model of MPP+-induced neurotoxicity was
then used to examine whether human dopaminergic
neurons can be protected from damage by the glial cell
line-derived neurotrophic factor (GDNF).

MATERIALS AND METHODS

hESC Culture and Dopaminergic Differentiation

hESC lines (BG01 and I6) were either maintained on
inactivated mouse embryonic fibroblast (MEF) feeder
cells in Dulbecco’s modified Eagle’s medium/Ham’s F12
(DMEM/F12, 1 : 1) supplemented with 20% knockout serum
replacement (KSR), 2mM nonessential amino acids, 2mM
L-glutamine, 50 mg/ml Penn-Strep (all from Invitrogen,
Carlsbad, CA), 0.1mM b-mercaptoethanol (Specialty Media,
Phillipsburg, NJ), and 4 ng/ml of basic fibroblast growth
factor (bFGF, Sigma, St Louis, MO), or on fibronectin-
coated dishes in medium conditioned with MEF for 24 h
as described previously (Brimble et al, 2004). Cells were
passaged either manually or enzymatically every 5 days. The
medium was changed every day.
Dopaminergic differentiation of hESCs was induced by

the mouse stromal cell line PA6 as described previously
(Zeng et al, 2004a, b). Briefly, hESCs were seeded at a
density of approximately 1000 clumps/3 cm dish on a
confluent layer of PA6 feeder cells in Glasgow Minimum
Essential Media (GMEM, Invitrogen) supplemented with
10% KSR (Invitrogen), 1mM pyruvate (Sigma), 0.1mM
nonessential amino acids, and 0.1mM b-mercaptoethanol.
hESCs were allowed to differentiate into dopaminergic

neurons for 3 weeks on PA6 cells before drug treatment. A
colony was counted as a TH+ colony if at least 25 individual
cells in the colony were stained for tyrosine hydroxylase
(TH). Microscopic fields were randomly chosen for count-
ing and statistical analysis.

MPP+ and GDNF Treatments

MPP+ (Sigma) was dissolved in ultrapure sterile H2O and
was freshly prepared for each experiment. In most of the
experiments, hESCs that had been cocultured with PA6 cells
for 3 weeks were exposed to 1mM MPP+ for 24 h, except
for time course and dosage response studies, where the
concentration of MPP+ and the drug exposure time are
specifically indicated. For GDNF neuroprotective experi-
ments, unless specifically stated, 25 ng/ml of GDNF (R&D
Systems, Minneapolis, MN) was added to cultures 1 h before
MPP+ treatment.

Immunocytochemistry

Expression of TH was examined by immunocytochemistry
using staining procedures described previously (Zeng et al,
2003). Briefly, hESCs differentiated on PA6 cells were fixed
with 2% paraformaldehyde for 30min, blocked in blocking
buffer (5% goat serum, 1% BSA, 0.1% Triton X-100) for 1 h,
and incubated in the primary antibody (1 : 1000, Pel Freez,
Rogers, AR) at 41C overnight. Appropriately coupled
secondary antibody (Molecular Probes) was tested for
crossreactivity and nonspecific immunoreactivity. 40,6-
Diamidino-2-phenylindole (DAPI, 1 : 1000, Sigma) was used
to identify nuclei. Images were captured on an Olympus
fluorescence microscope.
For cleaved caspase-3 immunohistochemistry, 24 h after

MPP+ treatment, the cells were treated with 0.3% Triton
X-100 for 10min at room temperature, fixed with 4%
paraformaldehyde for 30min at 41C, followed by overnight
incubation with polyclonal cleaved caspase-3 primary
antibody (Cell Signaling, Beverly, MA). Subsequent proces-
sing with biotinylated secondary antibody and ABC
complex was performed according to the manufacturer’s
procedures as described in the ABC kit (Vector Labora-
tories, Burlingame, CA). The cells were then reacted with
3,30-diaminobenzidine and hydrogen peroxide to visualize
the peroxidase reaction. Positive cells were counted under a
� 20 objective lens in 10 randomly selected photographic
fields for each group for statistical analysis. Images were
taken using a Zeiss LSC System with an Axiovert 135
microscope.

Measurement of Lactate Dehydrogenase (LDH) Activity

General cytotoxicity was determined by the release of LDH
into the culture medium, using a nonradioactive cytotoxi-
city assay kit (Promega, Madison, WI) according to the
manufacturer’s protocol. Absorbance at 490 nm is owing to
the formation of nicotinamide adenine dinucleotide, which
results in the conversion of a tetrazolium (INT) into a red
formazan product. The amount of color formed is propor-
tional to the number of lysed cells. Data are expressed as
percentages of the control samples.
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Measurement of Intracellular Reactive Oxygen Species
(ROS) Formation

The dye DCFH2-DA, which is oxidized to fluorescent DCF
by hydroperoxides, was used to measure relative levels of
cellular peroxides (Park et al, 2003). After exposure to MPP
+ , 100 ml of dye in ethanol was added to the culture media at
a final concentration of 500 mM and incubated for 30min at
371C. To obtain dissociated hESCs for the ROS assay, cells
were washed twice with phosphate-buffered saline (PBS)
and then scraped from the dish with a pipet tip into 200 ml
of 1% triton X-100 in PBS. Fifty microliters of cell
suspension was measured in duplicate by a fluorescence
microplate reader at an excitation wavelength of 485 nm and
an emission wavelength of 530 nm. Hundred microliters of
ethanol (without DCFH2-DA) was added to another cell
sample to correct for autofluorescence generated by the
cells. The same volume of 1% Triton X-100 buffer with
DCFH2-DA without cells was set up as a blank control. Data

are expressed as percentages of control fluorescence
intensity units/mg protein. The experiment was repeated
three times.

RESULTS

MPP+ Toxicity

After 3 weeks of differentiation, approximately 80% of hESC
colonies contained TH-positive neurons. At that time, more
than 50% of colonies contained a high percentage (20–50%)
of TH+ cells. A typical hESC culture after 3 weeks of
differentiation is shown in Figure 1a (left panels), in which
several differentiated colonies and numerous TH-positive
cells with extensive process formation can be seen. Previous
studies using the same differentiation protocol have shown
that dopaminergic neurons derived from hESCs express
many markers of dopaminergic neurons, are postmitotic
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Figure 1 MPP+ toxicity for hESC-derived dopaminergic neurons is evidenced by decreased numbers of TH-positive cells, loss of processes, release of
LDH, and generation of ROS. (a) Immunocytochemical analysis by TH showed a significant decrease in TH-positive cells after 1mM MPP+ for 24 h, and the
surviving TH-positive had an immature appearance with an apparent loss of processes. Scale bar: 400 mm for � 5 and 100 mm for � 20. Inset: An example of
TH-positive cells in a colony stained with DAPI to show cell nuclei. (b) The decrease in TH-positive colonies was dose-related, with a three-fold decrease for
the highest concentration of MPP+ (5mM). (c) LDH was released into the culture medium following MPP+ . LDH activity was increased approximately two-
fold 24 h after 1mM MPP+ . (d) ROS generation was increased after MPP+ treatment. *po0.05, **po0.01 and ***po0.001; Tukey compromise following
significant one-way ANOVA.
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(Zeng et al, 2004a), and are electrophysiologically active
(unpublished data).
After treatment with 1mM MPP+ for 24 h, there was a

substantial decrease in TH-positive colonies and TH-
positive cells within colonies (Figure 1a and b). In addition,
there was an apparent loss of processes by the TH-positive
cells, and the remaining surviving TH-positive cells had
an immature appearance (Figure 1a, right panel). The
number of colonies containing TH-positive cells showed a
dose-related decrease, from 7972.4% in control cells to
2673.9% in cells treated with 5mM MPP+ (Figure 1b).
Additional loss of TH-positive colonies occurred between 24
and 48 h for lower concentrations of MPP+ (0.5 and 1mM),
but not for the highest concentration (5mM) (Supplemen-
tary Figure 1a), indicating that the toxic effect was already
maximal by 24 h for 5mM MPP+ . MPP+ caused a dose-
related toxic effect at 24 h as measured by the release of
LDH into the medium (Figure 1c). After 48 h, there was an
additional increase in LDH for the lower doses (0.5 and
1mM), but no further increase for the highest dose (5mM)
of MPP+ (Supplementary Figure 1b). Therefore, the LDH
data are consistent with the results for TH+ cell loss. LDH
release was not induced by MPP+ treatment of either
undifferentiated hESCs or PA6 cells.

ROS Production

As MPP+ neurotoxicity is believed to be mediated, at least
partially, by ROS generation, we monitored ROS production

during MPP+ treatment using the DCF fluorescence assay
for intracellular peroxides. As shown in Figure 1d, MPP+

produced a dose-dependent increase in ROS at 24 h, with a
substantial increase even for the lowest concentration
(0.5mM) of MPP+ tested. By 48 h, ROS had decreased
nearly to control levels (data not shown). MPP+ treatment
of undifferentiated hESCs or PA6 cells did not increase ROS
production (data not shown).

Neuroprotective Effects of GDNF

GDNF has been demonstrated to exert a neuroprotective
effect in rodent and subhuman primate PD models both in
vivo and in vitro. We therefore tested whether GDNF is able
to protect hESC-derived dopaminergic neurons from MPP+

toxicity. As high concentrations of GDNF can have a toxic
effect on neurons, we tested the dosage response to GDNF
in our culture system. By TH immunofluorescence analysis,
the number of TH-positive colonies and the morphology of
TH-positive cells in samples treated with 25 ng/ml GDNF for
24 h were similar to untreated control cells (Figure 2a).
Higher concentrations of GDNF (450 ng/ml) produced a
toxic effect (data not shown).
Although MPP+ caused cell shrinkage and processes

retraction (Figure 2a), pretreatment with GDNF led to
marked preservation of TH-positive cells as well as
maintenance of TH-positive processes (Figure 2a). TH-
positive colony counts revealed that GDNF almost entirely
prevented the toxicity of MPP+ : 6971.2% of colonies were
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Figure 2 GDNF protected human dopaminergic neurons from MPP+ toxicity. (a) Immunocytochemical analysis for TH revealed that pretreatment with
GDNF led to a marked preservation of TH-positive cells as well as a preservation of TH-positive processes. (b) TH-positive colony counts showed that
GDNF almost entirely prevented the loss of TH-positive colonies. By a two-way ANOVA, the main effects of GDNF and MPP+ , and the interaction, were
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TH-positive in cultures pretreated with GDNF before MPP+ ,
as compared to 7772.3% in control cultures and 7572.2%
in cultures treated with GDNF only (Figure 2b). In contrast,
only 4172.1% of colonies treated with MPP+ were positive
for TH. In addition, GDNF protected against MPP+ toxicity
as measured by LDH release (Figure 2c).
We also investigated the possibility that pretreatment

with GDNF has the capacity to prevent ROS accumulation
in dopaminergic neurons following MPP+ treatment. No
increase in ROS was observed after treatment with GDNF
alone, whereas ROS was elevated after MPP+ (Figure 2d).
Pretreatment with GDNF before MPP+ decreased ROS to
control levels (Figure 2d). Therefore, GDNF does not simply
protect human dopaminergic neurons from the conse-
quences of ROS accumulation, but also prevents accumula-
tion of ROS per se.

MPP+-Induced Cell Death via Apoptosis

Because it is generally believed that apoptosis contributes
to MPP+ neurotoxicity and is a possible causative factor in
the development of PD in humans, we used immuno-

cytochemistry for active caspase to determine the nature of
cell death caused by MPP+ . Only a few caspase-3-
immunoreactive cells (B20 cells/field) were observed in
the control and GDNF-treated samples, whereas a signifi-
cantly stronger signal and larger numbers of caspase-3-
positive cells (B230 cells/field) were found in the MPP+

-treated group (Figure 3a and b). The increase in caspase-3-
positive cells following MPP+ treatment was significantly
attenuated by pretreatment with GDNF (Figure 3a). Mor-
phologically, a few well-differentiated, fine-process bearing
cells were found to be positive, whereas most caspase-3-
positive signals were easily discerned as cellular nuclei
(Figure 3).

DISCUSSION

The main pathological hallmark of PD is a progressive loss
of substantia nigra dopaminergic neurons in the midbrain.
Understanding the mechanism of neuronal cell death
involved in PD may be of value in developing neuropro-
tective therapies. Given the methodological and biological
difficulties in studying neuronal cell death in human brains,
in vitro models of dopaminergic cell death are powerful, as
they allow the study of neurodegeneration as well as novel
therapeutic strategies. Nevertheless, with very few excep-
tions (Clarkson et al, 1997), it has not been possible to
examine directly the toxic effects of neurotoxins and
protective effects of multiple factors for normal human
dopaminergic neurons, because the availability of human
dopaminergic neurons derived from fetal material is
extremely limited. In the present study, we showed that
hESCs can provide an unlimited source of normal human
dopaminergic neurons for in vitro studies of neurotoxic and
neuroprotective processes that might be related to PD.
In vitro models of MPP+-induced cell death are widely

used because MPTP produces selective nigral neuronal
death in many species including humans and subhuman
primates, and because these abnormalities are associated
with motor symptoms reminiscent of PD (Burns et al, 1983;
Davis et al, 1979; Langston et al, 1983; Porrino et al, 1987).
Because GDNF can exert neuroprotective effects against
MPP+ toxicity in rodent and subhuman primate PD
models, it has been considered to be one of the most
promising strategies in attempts to delay the progression of
the human disorder (Akerud et al, 2001; Gash et al, 1998;
Granholm et al, 2000; Lin et al, 1993; Tomac et al, 1995;
Zhang et al, 1997). The present data using human
dopaminergic cells are consistent with data obtained from
rodent and subhuman primate PD models. Using hESC-
derived dopaminergic neurons, we showed that MPP+

causes dose-dependent cell death of TH-positive neurons by
activating a caspase-3-dependent apoptotic pathway. This
seems to occur via the production of ROS, as GDNF, which
protects against MPP+ toxic effects, markedly attenuated
ROS production and caspase-3 activation.
One of the major mechanisms of cell death in dopami-

nergic neurons is believed to involve ROS (Cadet and
Brannock, 1998), and dopamine itself can lead to the
production of ROS through a number of processes
(Teismann et al, 2003). There have been studies that
suggest that GDNF can protect dopaminergic neurons
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against the toxic sequelae of ROS. For example, vitamin D,
which increases GDNF production, protects against damage
of dopaminergic neurons induced by both 6-hydroxydopa-
mine and H2O2 (Son et al, 1999; Wang et al, 2001). GDNF
also has protective effects against the consequences of ROS
damage for cochlear cells (Yamasoba et al, 1999). In
cultured motor neurons, GDNF was found to inhibit both
the formation of ROS and ROS-induced biochemical
reactions (Irie and Hirabayashi, 1999). The present data
suggest that the protective effect of GDNF against MPP+

-induced damage of dopaminergic neurons is mediated at
least in part by a reduction in ROS formation.
Although the mechanism of PA6 induction of dopami-

nergic differentiation remains unclear, it is believed that
factors secreted by PA6 cells may be responsible for this
effect. Yamazoe et al (2005) have recently showed that
dopaminergic differentiation of mouse ESCs can be induced
by medium collected by washing PA6 cells with PBS
containing heparin. We have found that PA6 cell-condi-
tioned medium can induce dopaminergic differentiation
of an NCAM+ FACS-isolated NTera2 cell population
(Schwartz et al, 2005). Thus, it is reasonable to ask whether
MPP+ treatment could have an effect on the ability of the
PA6 cells to secrete the appropriate conditioning factors,
which might account for the decrease in TH+ cells by
MPP+ treatment. We believe that this is unlikely, as we did
not observe increased cell death as measured by LDH
release, or increased ROS formation, in PA6 cells treated
with the highest dose (5mM) of MPP+ . In addition, even if
MPP+ had some other effect on PA6 cells, it would be
unlikely to have an impact on these experiments because
PA6 cells are not required for maintaining the dopaminergic
phenotype at the time of MPP+ treatment (3 weeks post-
differentiation). This is supported by the fact that hESCs
continue to differentiate into dopaminergic neurons in the
absence of stromal cells when passaged after coculturing
with stromal cells for 1–3 weeks (Perrier et al, 2004). Never-
theless, the possibility that either MPP+ or GDNP causes a
change in PA6 cell function cannot be entirely ruled out.
There are marked species differences in the sensitivity to

MPTP and its active metabolite, MPP+ (Kalaria and Harik,
1986; Kalaria et al, 1987). Rats are almost entirely
insensitive to MPP+ , mice are intermediately sensitive,
whereas non-human primates are highly sensitive to MPP+

and MPTP toxicity. Based on the Parkinsonism observed in
human subjects that have been exposed to MPTP, humans
are believed to be highly sensitive as well, although this
cannot be tested directly. The reasons for these differences
are not entirely understood. One major factor appears to be
monoamine oxidase activity in brain microvessels (Kalaria
and Harik, 1987; Riachi and Harik, 1988). It is believed that
the high monoamine oxidase activity in rodent microvessels
results in metabolism of MPTP within blood vessels, thus
obstructing the entry of MPTP into the brain (Riachi and
Harik, 1988). In addition, there are differences in metabo-
lism of MPTP in rodents as compared to primates, which
may also contribute to higher and more prolonged
concentrations of MPP+ in the primate brain (Giovanni
et al, 1994). There is also, however, a 10-fold difference
between rats and mice in susceptibility to MPP+ when
administered directly into the striatum, so at least some of
the differences between species seem to be unrelated to the

conversion of MPTP to MPP+ (Johannessen et al, 1985).
Differences in vesicular storage capacity for MPP+ , possibly
owing to differences in the vesicular monoamine transpor-
ter itself (Lesch et al, 1993; Roussa and Krieglstein, 2004;
Staal et al, 2000), as well as differences in the dopamine
transporter (Mitsuhata et al, 1998) have been suggested to
contribute to the differential susceptibility. Another factor
that may contribute to sensitivity of primates to MPP+ is
binding to neuromelanin (D’Amato et al, 1987). Because of
differences between human and subhuman dopaminergic
neurons, an in vitro model of human dopaminergic neurons
may be especially valuable. Human dopaminergic neurons
may also be differentially sensitive to a variety of toxic
agents, and the availability of human dopaminergic neurons
derived from hESCs may thus facilitate the study of toxic
mechanisms in PD in general, as well as mechanisms
involved in other disorders, which may involve the brain
dopaminergic systems such as schizophrenia and drug
abuse.
In these initial studies using hESCs, we have shown that

exposing hESC-derived dopaminergic neurons to MPP+ led
to the death of these cells via a process that resembles
apoptosis. In addition, treatment of these cells with GDNF
afforded them protection against this well-known dopami-
nergic toxin. These observations suggest that hESC-based
in vitro models might be helpful in studies of various
cellular and molecular pathways that are involved in the
normal function and degeneration of human dopaminergic
neurons.
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