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We studied in vivo expression of the serotonin transporter (SERT) protein after 3,4-methylenedioxymethamphetamine (MDMA),

p-chloroamphetamine (PCA), or fenfluramine (FEN) treatments, and compared the effects of substituted amphetamines to those of

5,7-dihydroxytryptamine (5,7-DHT), an established serotonin (5-HT) neurotoxin. All drug treatments produced lasting reductions in

5-HT, 5-HIAA, and [3H]paroxetine binding, but no significant change in the density of a 70 kDa band initially thought to correspond

to the SERT protein. Additional Western blot studies, however, showed that the 70 kDa band did not correspond to the SERT protein,

and that a diffuse band at 63–68 kDa, one that had the anticipated regional brain distribution of SERT protein (midbrain4
striatum4neocortex4cerebellum), was reduced after 5,7-DHT and was absent in SERT-null animals, was decreased after MDMA,

PCA, or FEN treatments. In situ immunocytochemical (ICC) studies with the same two SERT antisera used in Western blot studies

showed loss of SERT-immunoreactive (IR) axons after 5,7-DHT and MDMA treatments. In the same animals, tryptophan hydroxylase

(TPH)-IR axon density was comparably reduced, indicating that serotonergic deficits after substituted amphetamines differ from those

in SERT-null animals, which have normal TPH levels but, in the absence of SERT, develop apparent neuroadaptive changes in 5-HT

metabolism. Together, these results suggest that lasting serotonergic deficits after MDMA and related drugs are unlikely to represent

neuroadaptive metabolic responses to changes in SERT trafficking, and favor the view that substituted amphetamines have the potential

to produce a distal axotomy of brain 5-HT neurons.
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INTRODUCTION

Substituted amphetamines such as 3,4-methylenedioxy-
methamphetamine (MDMA), p-chloroamphetamine (PCA),
and N-ethyl-a-methyl-m-[trifluoromethyl] phenethylamine
(fenfluramine, FEN) have the potential to produce lasting
effects on brain serotonin (5-HT) neurons. In particular,
after certain dosing conditions, MDMA (Green et al, 2003),
PCA (Sanders-Bush and Steranka, 1978; Fuller, 1992), and
FEN (Schuster et al, 1986; Appel et al, 1989, 1990; McCann
et al, 1997) produce long-term reductions in the concentra-
tions of 5-HT and its major metabolite, 5-hydroxyindole-
acetic acid (5-HIAA), the activity of 5-HT’s rate limiting
synthetic enzyme, tryptophan hydroxylase (TPH), and the

abundance of membrane and vesicular 5-HT transporters,
as measured by [3H]paroxetine and [3H]DTBZ binding,
respectively. In addition, tract-tracing studies after MDMA
show reduced anterograde [3H]proline transport along
ascending 5-HT axonal projections (Callahan et al, 2001).
Collectively, these findings have been taken to indicate that
MDMA and related drugs have the potential to produce a
distal axotomy of brain 5-HT neurons (Battaglia et al, 1987;
O’Hearn et al, 1988; Molliver et al, 1990; Fuller, 1992;
Wilson et al, 1993; Gibb et al, 1994; Seiden and Sabol, 1996;
Green et al, 2003; Gudelsky and Yamamoto, 2003; McCann
and Ricaurte, 2004).
Several recent investigations, however, report that the

serotonin transporter (SERT) protein, as measured by
Western blot analysis, is not decreased after MDMA, PCA,
or FEN treatments that produce substantial reductions in
5-HT and [3H]paroxetine binding (Rothman et al, 2003,
2004; Wang et al, 2004, 2005). Based upon these observa-
tions, these investigators have suggested that serotonergic
deficits after substituted amphetamines represent neuro-
adaptive changes in 5-HT metabolism related to SERT
sequestration (trafficking) rather than neurotoxicity. If
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correct, this hypothesis would have far reaching implica-
tions, as the neurotoxic potential of certain substituted
amphetamines is widely recognized (see above), and there
has been extensive human use of MDMA recreationally
(Kalant, 2001) and FEN clinically (McCann et al, 1997).
The SERT is a key molecular target of MDMA and other

ring-substituted amphetamines (Rudnick and Wall, 1992).
As an integral membrane protein belonging to the Na+ /Cl�-
dependent transporter family (Amara and Kuhar, 1993), the
SERT is chiefly responsible for terminating the action of
5-HT released into the synaptic cleft (Blakely et al, 1991;
Hoffman et al, 1991; Rudnick and Wall, 1992). Molecular
studies indicate that the SERT consists of 630 amino acids,
has 12 transmembrane domains, and that its C- and N-
terminal regions lie in the cytoplasm (Tate and Blakely,
1994; Qian et al, 1995). In recent years, it has become
apparent that surface expression of the SERT on the cell
membrane is amenable to regulation through various
mechanisms (Qian et al, 1997; Quick, 2003; Samuvel et al,
2005), including rapidly modulated trafficking-dependent
pathways susceptible to actions of amphetamines (Rama-
moorthy and Blakely, 1999; Whitworth et al, 2002). For
instance, studies using isolated cell systems indicate that
both acute (Ramamoorthy and Blakely, 1999) and chronic
(Whitworth et al, 2002) MDMA treatments increase SERT
surface expression.
The purpose of the present studies was to further evaluate

lasting effects of MDMA and other substituted amphet
amines on SERT protein expression and other markers of
brain 5-HT neurons, and compare their effects to those of
5,7-dihydroxytryptamine (5,7-DHT), an established 5-HT
neurotoxin (Jonsson, 1980; Baumgarten and Lachenmayer,
2004). Specifically, using two different anti-SERT polysera,
we sought to establish the validity and sensitivity of
Western blot methods for detecting drug-induced changes
in SERT protein expression, and to test the hypothesis
that serotonergic deficits after substituted amphetamines
represent neuroadaptive responses in 5-HT metabolism
secondary to SERT sequestration (trafficking).

MATERIALS AND METHODS

Drugs and Chemicals

(7) MDMA hydrochloride and (7) FEN hydrochloride
were obtained from the National Institute on Drug Abuse
(Bethesda, MD); (7) p-chloroamphetamine (PCA) hydro-
chloride was purchased from the Sigma Chemical Co. (St
Louis, MO). SERT antibody 1, obtained from ImmunoStar
(#24330) (Hudson, WI), is a rabbit polyclonal antisera
directed against a synthetic peptide sequence corresponding
to amino acids 579–599 of the SERT. This antibody appears
to be the same as that used by Rothman et al (2003) but
obtained from Calbiochem (La Jolla, CA, now EMD
Biosciences, San Diego, CA) instead of ImmunoStar
(Hudson, WI; unpublished observations). SERT antibody
2, purchased from Santa Cruz Biotechnology (#SC-1458)
(Santa Cruz, CA), is a goat polyclonal antisera raised against
a peptide fragment of the C-terminus of the SERT. The
primary actin antibody was purchased from Sigma (St
Louis, MO) (#A-5441) and a secondary antibody from
Amersham (#NA931V). SDS-polyacrylamide gels (8 or

10%), PVDF membranes, 2� SDS Western loading buffer,
and WesternBreeze chemiluminescent kit-anti-mouse/goat/
rabbit were purchased from Invitrogen (Carlsbad, CA).
The ECL Western blotting analysis kit was purchased
from Amersham Bioscience (Buckingshire, England).
Igepal CA-630, sodium deoxycholate, PMSF, aprotinin,
sodium orthovanadate, 5,7-dihydroxytryptamine (5,7-
DHT) creatine sulfate, pargyline hydrochloride, desipra-
mine hydrochloride, and ascorbic acid were purchased
from Sigma (St Louis, MO). [3H]paroxetine was
purchased from PerkinElmer Life Sciences (Boston, MA).
Citalopram was a generous gift from H Lundbeck
(Copenhagen, Denmark). The protein DC assay kit was
obtained from Bio-Rad Laboratories (Hercules, CA).

Animals

Male albino Sprague–Dawley rats weighing 290–310 g were
purchased from Harlan (Indianapolis, IN). SERT-null mice
and wild-type controls were kindly provided by Dr George
Uhl, NIDA/IRP. Animals were individually housed and
treated in clear acrylic cages in a temperature-controlled
room (21711C). All animal care and experimental mani-
pulations were approved by the Institutional Animal Care
and Use Committee at the Johns Hopkins University School
of Medicine, and were in accordance with the National
Institutes of Health Guide for the Care and Use of
Laboratory Animals. The facility for housing and care of
the animals was accredited by the American Association for
the Assessment and Accreditation of Laboratory Animal
Care.

Drug Treatments

Doses and regimens of drugs used in the present study were
chosen based upon published reports demonstrating
efficacy of these drug treatments in producing lasting
effects on 5-HT neurons (including SERT binding).

5,7-DHT. Rats (N¼ 6–9 per group) were treated 30min
before the start of the surgery with desipramine (25mg/kg,
i.p.) and pargyline (50mg/kg, i.p.), in order to protect
noradrenergic neurons from the neurotoxin and to prevent
the degradation of 5,7-DHT. Rats were then anesthetized
with sodium pentobarbital (60mg/kg; i.p.) prior to intra-
ventricular (i.c.v.) injection of 5,7-DHT. 5,7-DHT was
administered into the right lateral ventricle at a dose of
50, 100, or 150 mg (dose calculated as the free base) in 7.5 ml
sterile 0.9% saline containing 1% ascorbic acid, delivered
over 2min using a 10 ml Hamilton syringe. Control animals
received an equivalent volume of the vehicle. The dose
of 5,7-DHT was selected based upon prior studies by
Breese et al (1985). The stereotaxic coordinates of the
injection site were 1.0mm posterior from bregma, 1.5mm
lateral from the midline, and 3.5mm deep from the
dura using a stereotaxic atlas (Paxinos and Watson, 1998).
5,7-DHT treatment was performed at room temperature
(21711C).

MDMA. Animals (N¼ 6–8 per group) were given MDMA
orogastrically (15mg/kg, every 1.5 h� 3, for a total dose of
45mg/kg), at an ambient temperature of 2570.51C. Rats
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were placed at the warmer ambient temperature 1 h before
the first dose of MDMA and maintained at that temperature
for 3 h after the last dose of MDMA. Rats were then returned
to a room at 21711C. These particular treatment conditions
were selected based on pilot studies in our laboratory
showing that, under these conditions, MDMA produces
large 5-HT deficits in the rat brain. Control animals
received equal volumes of saline.

FEN. Animals (6–9 per group) were administered FEN
intraperitoneally (6mg/kg, every 2 h� 4, for a total dose of
24mg/kg) at 21711C. Control animals received equal
volumes of saline.

PCA. Animals (6–9 per group) received PCA intraperitone-
ally (5mg/kg) at 21711C. The dose of PCA was selected
based on the paper of Rothman et al (2003). Control
animals received equal volumes of saline.

Dissection

Brain regions were dissected free as previously detailed by
Heffner et al (1980).

Neurochemical Analyses

At 1 week after drug treatment, regional brain concentra-
tions of 5-HT and 5-HIAA were measured by means of high-
performance liquid chromatography with electrochemical
detection (HPLC-EC), as recently described (Ricaurte et al,
1992).

SERT Binding

At 1 week after drug treatment, quantitative measurement
of [3H]paroxetine-labeled SERT was performed using the
method of Battaglia et al (1987), with minor modification.
Briefly, brain tissue was weighed and homogenized in 50
volumes of buffer (50mM Tris HCl, pH 7.4, 120mM NaCl,
and 5mM KCl) with a Brinkman polytron homogenizer
(setting # 5, 30 s), and the homogenate was centrifuged in a
Sorvall RC5B Plus centrifuge at 20 000 r.p.m. (49 461g) for
10min. The resulting pellet was resuspended in 50 volumes
of buffer, homogenized for 15 s, and recentrifuged, as above.
The final pellet was resuspended to wet tissue weight
concentration of 12mg/ml of buffer. Membrane suspen-
sions were incubated with [3H]paroxetine at 21711C for
1 h. [3H]paroxetine was used at a predetermined saturating
concentration of 0.24 nM. Citalopram, at a final concentra-
tion of 1 mM, was used to estimate nonspecific binding.
Incubations were terminated by rapid dilution with 5ml of
ice-cold buffer, and immediate filtration through Whatman
GFB filter. Membranes were harvested by filtration through
Whatman GFB filters soaked in 0.05% polyethyleneimine.
Filters were washed three times using 6ml of ice-cold
buffer. Radioactivity was measured with a Packard-1500
Tricarb Liquid Scintillation Analyzer.

Western Blot Analyses

Dissected brain tissue was weighed, then homogenized
(Brinkman polytron homogenizer, setting #5, 30 s) in RIPA

buffer (4ml buffer per gram tissue) containing 1� PBS, 1%
Igepal CA-630, 0.5% sodium deoxycholate, and 0.1% SDS,
and proteinase inhibitors (0.1mg/ml PMSF, 30 ml/ml
aprotinin, and 1mM sodium orthovanadate). The homo-
genate was placed on ice for 30min with intermittent
shaking, then centrifuged in an Eppendorf 5415D centrifuge
at 12 000 r.p.m (11 228g) for 15min. The supernatant was
collected and centrifuged again, as above. The final resulting
supernatant was stored at �701C until use. Protein content
of the supernatant was determined using Bio-Rad DC/assay
reagents, as per the manufacturer’s instructions. Tissue
samples were mixed (v/v: 1/1) with Invitrogen’s 2� SDS
loading buffer (62.5mM Tris-HCl, pH 6.8, 10% glycerol, 2%
SDS, 0.025% bromophenol blue, and 50mM dithiothreitol),
heated to 901C for 5min, and loaded on 8 or 10%
Tris-glycine SDS-polyacrylamide gels, followed by electro-
phoresis and transfer onto 0.2 mm PVDF membranes.
After preincubation in 1�TBST plus 5% milk, membranes
were incubated with SERT antibody 1 (1 : 330 dilution),
SERT antibody 2 (1 : 200 dilution), or a mouse actin anti-
body (1 : 500 dilution) at room temperature for 2–4 h. To
visualize signals, an anti-rabbit chemiluminescent immuno-
detection kit from Invitrogen (Carlsbad, CA) was used
for SERT antibody 1, and an ECL system from Amersham
(Buckingshire, England) along with an anti-goat secondary
antibody (SantaCruz #SC2020) was used for SERT antibody
2. Equal protein loadings per lane (200 mg) were calculated
by prior protein determination, as above. Actin was used to
further correct the loading amount in some studies. Band
densities were semiquantitatively analyzed using either the
NIH image program, Image J (http://rsb.info.nih.gov/ij/)
or an MCID Elite 6.0 image analysis system (Amersham
Biosciences Niagara Inc, St Catherines, Ontario, Canada).

Immunocytochemical Studies

Previously described methods were used (Hatzidimitriou
et al, 1999), with slight modification. Briefly, rats (N¼ 3 per
group) were killed 1–2 weeks after treatment. Intracardiac
perfusion was then performed under deep sodium pento-
barbital anesthesia (60mg/kg). After the vasculature was
cleared with 150ml of ice-cold PBS, perfusion was
continued with 400ml of cold 4% paraformaldehyde and
0.12% glutaraldehyde in 0.15M phosphate buffer, pH 7.4.
Tissue blocks were placed in buffered 4% paraformaldehyde
for 4–6 h and then in 10% dimethylsulfoxide in PBS
overnight. Blocks were frozen-sectioned (30 mm) using a
sliding microtome, and collected in cold PBS. Free-floating
sections were preincubated in SuperBlock Blocking Buffer
(Pierce, Rockford, IL) for 1 h at room temperature. Sections
were then incubated at 41C for 90 h with SERT antisera 1
(diluted 1 : 15 000 in SB/PBS (1 : 10) with 0.3% Triton X-100
and 5% normal goat serum), or SERT antisera 2 (diluted
1 : 5000 in SB/PBS (1 : 10) with 0.3 % Triton X-100 and 5%
normal rabbit serum). Bound immunoglobulin was visua-
lized with the Avidin/Biotin Peroxidase method using the
Vectastain Elite rabbit and goat kits, respectively (Vector
Laboratories, Burlingame, CA), and staining was enhanced
with the osmiophilic reaction of Gerfen (1985). For
tryptophan hydroxylase (TPH), immunocytochemistry was
performed on tissue blocks cryoprotected in 0.1M phos-
phate buffer with 20% sucrose. Free-floating sections
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(30 mm) were preincubated in PBS containing 0.5% gelatin,
2% normal rabbit serum, and 0.3% Triton X-100 for 1 h at
room temperature. Sections were then incubated at 41C for
48 h with TPH antiserum (diluted 1 : 1000 in PBS with 0.25%
gelatin, 2% normal rabbit serum, and 0.3% Triton X-100).

Secondary incubation extended overnight (approximately
20 h) at 41C using the biotinylated anti-sheep reagent from
the Vectastain Elite Sheep kit. The final incubation with
avidin/biotin complex was carried out for 4.5 h at 41C and
staining was enhanced as indicated above.
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Figure 1 5-HT (a), 5-HIAA (b), [3H]paroxetine binding (c), and 70 kDa protein expression (d–f) in the cerebral cortex of rats treated with 5,7-DHT 1
week previously. After pretreatment with pargyline (50mg/kg; i.p.) and DMI (25mg/kg; i.p.), rats received vehicle or 5,7-DHT into the right lateral ventricle at
a dose of 50, 100, or 150 mg per rat (N¼ 6–9 rats in each group), at ambient temperature of 21711C, and were killed 1 week after drug treatment. Control
values for 5-HT, 5-HIAA, and [3H]paroxetine binding were 0.3870.05mg/g, 0.1670.01mg/g, and 22697147 d.p.m./mg, respectively. Bars represent the
mean7SEM for each group. In all cases, statistically significant differences represent po0.05. 1Different from control, 2different from 5,7-DHT 50 mg,
3different from 5,7-DHT 100 mg, 4different from 5,7-DHT 150 mg, *different from control. Differences in density of 70 kDa band (arrow) in control and 5,7-
DHT-treated rats did not achieve significance (panels d and e). Bottom panel (f) shows entire, representative Western blot prepared with SERT antibody 1
on a 10% minigel, as described in Materials and Methods. C¼ control; D¼ drug (5,7-DHT).
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Statistical Analyses

HPLC data were analyzed by one-way ANOVA, followed by
Duncan’s multiple range post hoc comparisons, when
appropriate. Binding and Western blot data were analyzed
by Student’s t-test. Results were considered significant when
Po0.05, using a two-tailed test. Data analyses were
performed using the Statistical Program for the Social
Sciences (SPSS for Windows, Release 10.5).

RESULTS

As anticipated, 5,7-DHT produced lasting, dose-related
reductions of 5-HT, 5-HIAA, and [3H]paroxetine binding
(Figure 1a–c). In contrast, in the same animals, 5,7-DHT
failed to produce a significant reduction in the density of a
70 kDa band thought to correspond to the SERT protein

(Figure 1, panels d–f) (Rothman et al, 2003; Wang et al,
2005).
To test the possibility that the lack of a significant effect

of 5,7-DHT in our studies might be related to ‘signal to
noise’ issues (due to the large amount of SERT protein in
platelets present in nonperfused brain tissue (Qian et al,
1995)), we removed all blood products by means of
transcardial perfusion with 150ml of ice-cold PBS, then
repeated our Western blot studies. As before, there was no
significant reduction in the 70 kDa band thought to
correspond to the SERT protein (not shown).
To determine if the above-mentioned 70 kDa band did, in

fact, correspond to the SERT protein, we examined its
relative regional brain distribution, and again evaluated its
sensitivity to prior 5,7-DHT treatment. As shown in Figure 2,
the 70 kDa band does not exhibit the expected relative
regional brain distribution of SERT, as it is equally
abundant across brain regions, including the midbrain
and cerebellum, which are known to differ vastly in SERT
protein content (Qian et al, 1995).

ST MB
5,7-DHT - - - + - + -

Actin

70 kD -
63-68kD -

CTX MB
VEH 5,7-DHT WT KO VEH 5,7-DHT WT KO

Rat Mouse Rat Mouse

SERT Antibody 1
HIPHIPCTXCTXCER

70 kD -
63-68kD -

MBMBMBCTXCTXCTX

a

b

Figure 2 Top panel (a) shows Western blot prepared with SERT
antibody 1 indicating that band at 70 kDa has a relatively uniform density
across various rat brain regions (ST, striatum; CER, cerebellum; MB,
midbrain; CTX, cerebral cortex; HIP, hippocampus), and that it is not
reduced 1 week after 5,7-DHT treatment (shown across top) in any of the
brain regions examined. Note that a fainter, more diffuse band at
approximately 63–68 kDa has a density that is highest in the midbrain,
lowest in the cerebellum, and intermediate in other regions examined. Also
note that the density of the 63–68 kDa band is markedly reduced 1 week
after 5,7-DHT treatment. Western blot was prepared on an 8% minigel, as
described in Materials and Methods. The same PVDF membrane was
stripped and reblotted with actin antibody, showing loading amount of
protein in each lane. Bottom panel (b) shows Western blot prepared with
SERT antibody 1 on an 8% minigel using 200 mg protein per lane from a 5,7-
DHT-treated animal (rat) and a SERT-KO animal (mouse). Note the
marked decrease in abundance of 63–68 kDa band in 5,7-DHT-treated rat
and in SERT-KO mouse, both in the parietal cortex (CTX) and midbrain
(MB). Also note that band at approximately 70 kDa is preserved in rat
previously lesioned with 5,7-DHT, as well as in SERT-KO mouse. Minor
species (rat vs mouse) and regional (cortex vs midbrain) differences are also
evident.

Figure 3 Western blots prepared with SERT antibody 1 showing
reduced density of 63–68 kDa band 1 week after treatment with MDMA
(top panels), PCA (middle panels), or FEN (bottom panels). Rats were
administered saline or MDMA (15mg/kg, orally, every 1.5 h� 3), PCA
(5mg/kg; i.p.), or FEN (6mg/kg every 2 h� 4). Western blots were
prepared on 8% minigels, as described in Materials and Methods. The same
PVDF membranes were stripped and reblotted with actin antibody,
showing comparable amounts of protein in each lane.
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In contrast to the 70 kDa band that does not appear to
correspond to the SERT protein (because it lacks the
expected relative regional brain distribution and is not

reduced after 5,7-DHT), there is a nearby, more diffuse, 63–
68 kDa band that exhibits the relative regional brain
distribution expected of the SERT (midbrain4striatum4
hippocampus4neocortex4cerebellum) (Figure 2). This
band is more readily discerned in 8% than in 10%
polyacrylamide minigels (compare immunoblots in Figure 1
and Figure 2). Notably, the abundance of the 63–68 kDa
band is markedly reduced after 5,7-DHT treatment
(Figure 2, upper and lower panels) and is absent in
SERT-KO animals (Figure 2b). Also of note is the fact that
SERT antibody 1 crossreacts with several other protein
bands in SERT-null mice, including one at approximately
70 kDa.
Having identified a diffuse 63–68 kDa band that, under

the present conditions, appears to correspond to the SERT
protein, we next examined if the density of this band was
affected by prior treatment with substituted amphetamines
(MDMA, PCA, or FEN). Like 5,7-DHT, all three substituted
amphetamines produced reductions in the density of the
63–68 kDa band 1 week after treatment, with quantitative
analyses showing significant decreases in the density of the
63–68 kDa band after MDMA, PCA, or FEN treatment
(Figures 3 and 4). Reductions in SERT, as measured by
Western blot analysis, were accompanied by reductions in
5-HT, 5-HIAA, and [3H]paroxetine binding (Figure 5).
To confirm our findings, we conducted additional

Western blot studies using a second SERT antibody also
raised against a C-terminus peptide of the SERT (see
Materials and Methods). As before, we first carried out
studies to identify which of the various bands visible on
immunoblots using SERT antibody 2 had a regional brain
distribution consistent with that of the SERT, then tested
the effects of substituted amphetamines (MDMA, PCA, or
FEN). Once again, a similar diffuse band at approximately
63–68 kDa was evident; this band had the regional
distribution expected of the SERT (midbrain4striatum4
hippocampus4neocortex4cerebellum), was reduced by
5,7-DHT treatment, and was absent in SERT-null animals
(Figure 6). As shown in Figure 7, the density of the 63–
68 kDa band was decreased 1 week after substituted
amphetamine treatment. As with SERT antibody 1, quanti-
tative studies with SERT antibody 2 showed significant
decreases in the density of the 63–68 kDa band after MDMA,
PCA, or FEN treatment (Figure 8).
Next, we examined SERT protein expression using an

alternate, yet complementary, method. In particular, we
used an in situ immunocytochemical (ICC) procedure that
permits visualization of the SERT protein in brain sections.
Using the same two SERT antibodies as in our Western blot
studies, we observed clear reductions in the density of
immunoreactive fibers that have the expected distribution
and appearance of serotonergic fibers innervating the
cerebral cortex (Figure 9) and hippocampal formation
(Figure 10), both after 5,7-DHT (middle panels) and MDMA
(lower panels) treatments.
As the SERT is a membrane protein amenable to cellular

redistribution or trafficking (see Introduction), we also
examined the expression of tryptophan hydroxylase (TPH),
a cytoplasmic serotonergic protein not known to be
modulated by trafficking-dependent pathways. In keeping
with the SERT studies above, TPH-IR axon density was
markedly reduced 1 week after treatment with 5,7-DHT or
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MDMA, again both in the cerebral cortex and hippocampal
formation (Figure 11).

DISCUSSION

Recent results of Western blot studies have led some to
reconsider the view that MDMA, PCA, and FEN have
neurotoxic potential toward brain 5-HT neurons (Rothman

et al, 2003, 2004; Wang et al, 2004, 2005). Specifically, based
upon observations that substituted amphetamines produce
decrements in 5-HT, 5-HIAA, and [3H]paroxetine binding
without concomitantly decreasing the density of a band
thought to correspond to the SERT protein, these investi-
gators postulated that lasting serotonergic effects of MDMA
and related drugs represent neuroadapative changes in
5-HT metabolism related to SERT sequestration (‘traffick-
ing’), rather than damage to 5-HT axon terminals. To
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examine this issue further and to test the hypothesis that
lasting effects of substituted amphetamines might involve
neuroadaptive changes in 5-HT metabolism secondary to
inactivation or decreased surface expression of the SERT
protein, we studied in vivo expression of the SERT protein
and other 5-HT neuronal markers (5-HT, 5-HIAA, and
TPH) after various substituted amphetamines (MDMA,
PCA, FEN), using the established 5-HT neurotoxin, 5,7-
DHT, as a positive control. Results of Western blot studies
indicate that the 70 kDa band previously thought to
correspond to the SERT protein (Rothman et al, 2003;
Wang et al, 2005) does not exhibit the known relative
regional distribution of brain SERT, is resistant to 5,7-DHT
treatment, and is present in SERT-KO animals. In contrast,
a diffuse band at approximately 63–68 kDa has the expected
regional brain distribution of the SERT, is markedly
reduced after 5,7-DHT treatment, and is absent in SERT-
KO animals. Notably, like other 5-HT neuronal indexes, this
63–68 kDa band is reduced 1 week after treatment with

substituted amphetamines (MDMA, PCA, or FEN). These
results indicate that SERT protein, as measured by Western
blot analysis, is decreased after substituted amphetamines,
and that decrements in SERT protein parallel decreases in
other 5-HT neuroaxonal markers.
To confirm and extend our Western blot findings, we also

studied SERT expression by means of in situ immunocyto-
chemistry (ICC), a complementary approach that allows
for visualization of the SERT protein in brain sections. As in
the Western blot studies, we used 5,7-DHT as a positive
control, and employed the same two SERT antisera (SERT
antibodies 1 and 2). After 5,7-DHT treatment, marked
reductions in regional brain SERT-IR axon density were
evident regardless of which of the two SERT antisera was
used. Parallel studies with MDMA (using the same SERT
antibodies) yielded similar findings. These results extend
findings of the present Western blot analyses and further
indicate that substituted amphetamines produce loss of
brain SERT protein.
As the SERT protein is a membrane protein that is

amenable to changes in surface expression and trafficking

Figure 6 Top panel (a) shows Western blot prepared with SERT
antibody 2 indicating that band at 63–68 kDa has a density that is highest in
the midbrain, lowest in the cerebellum, and intermediate in other brain
regions (ST, striatum; CER, cerebellum; MB,- midbrain; CTX, cerebral
cortex; HIP, hippocampus). Note reduced density of 63–68 kDa band 1
week after 5,7-DHT treatment (shown across top) in all brain regions
examined. Western blot was prepared on an 8% minigel using a total
protein preparation, as described in Materials and Methods. The same
PVDF membrane was stripped and reblotted with actin antibody, showing
comparable amount of protein in each lane. Bottom panel (b) shows
Western blot prepared with SERT antibody 2 on an 8% minigel using
200 mg per lane of total protein preparation from a 5,7-DHT-treated animal
(rat) and a SERT-KO mouse. Note marked decrease in abundance of 63–
68 kDa band in 5,7-DHT-treated rat and its absence in SERT-KO mouse,
both in the parietal cortex (CTX) and midbrain (MB). Also note that the
band at approximately 70 kDa is preserved in rat previously lesioned with
5,7-DHT, as well as in SERT-KO mouse. Minor species (rat vs mouse) and
regional (cortex vs midbrain) differences are also evident.
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Figure 7 Western blots prepared with SERT antibody 2 showing
reduced density of 63–68 kDa band 1 week after MDMA (top panels),
PCA (middle panels), or FEN (bottom panels) treatment. Rats were
administered saline or MDMA (15mg/kg, orally, every 1.5 h� 3), PCA
(5mg/kg; i.p.), or FEN (6mg/kg every 2 h� 4; i.p.) (n¼ 6–9 rats in each
group). Western blots were prepared on 8% minigels using a total protein
preparation, as described in Materials and Methods. The same PVDF
membranes were stripped and reblotted with actin antibody, showing
comparable amounts of protein in each lane.
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(see Introduction), we also studied TPH, a cytoplasmic
protein that is unique to 5-HT neurons and, to our
knowledge, is not modulated by trafficking-dependent
pathways. These studies revealed that MDMA, like 5,7-
DHT, produced reductions in TPH-IR axon density. These
results are in agreement with previous biochemical
determinations of TPH activity in animals treated with
substituted amphetamines (see Gibb et al, 1994), and
indicate that cytoplasmic as well as membranous seroto-
nergic proteins are lost after MDMA exposure. In addition,
the loss of TPH after MDMA indicates that the profile of
lasting serotonergic deficits after substituted amphetamines
differs from that in SERT-null animals which have normal
TPH levels, but, in the absence of the SERT protein, develop
apparent neuroadaptive changes in 5-HT metabolism
(Bengel et al, 1998; Kim et al, 2005) (Table 1). Hence, in
conjunction with loss of SERT protein, our TPH results
mitigate against the notion that decrements in 5-HT and
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Figure 8 Quantitation of reduced density of 63–68 kDa band 1 week
after treatment with MDMA (top panel), PCA (middle panel), or FEN
(bottom panel). Results shown represent the mean7SEM for each group.
Loading amount was maintained constant at 200 mg of protein per lane. In
all cases, statistically significant differences represent po0.05; C¼ control;
E¼ experimental. *Different from control.
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Figure 9 SERT-IR axons visualized with antisera 1 and antisera 2 in the
cerebral (parietal) cortex of representative control rats (a, b) and rats
previously treated with 5,7-DHT (c, d) or MDMA (e, f). Rats received 5,7-
DHT (i.c.v., 100 mg), MDMA (15mg/kg, orally, every 1.5 h� 3), or saline
and were killed 1–2 weeks after drug treatment, as described in Materials
and Methods. Compared to controls, note marked reduction in SERT-IR
axon density in cerebral cortex of both 5,7-DHT- and MDMA-treated rats.

Reduced SERT protein after MDMA and related drugs
T Xie et al

2647

Neuropsychopharmacology



5-HIAA after substituted amphetamines represent compen-
satory, neuroadaptive metabolic changes secondary to
inactivation or sequestration of membrane SERT protein.
Nonetheless, it is possible that residual SERT protein may
be subjected to differential SERT trafficking after MDMA,
FEN, or PCA administration, resulting in altered 5-HT
clearance.
Clearly, reductions in SERT protein, alone or in

combination with decreases in other 5-HT neuronal
markers, do not, by themselves, constitute conclusive
evidence of 5-HT axon terminal destruction. Theoretically,
such neurochemical deficits could be secondary to meta-
bolic ‘quiescence’ of brain 5-HT neurons. While we think
this is unlikely, and would maintain, instead, that a
neurotoxic effect on serotonergic nerve fibers is the most
parsimonious explanation of findings to date, additional
data will be required to conclusively demonstrate that
lasting effects of substituted amphetamines develop as a
consequence of degeneration of 5-HT axon terminals. In
this regard, the appearance of highly swollen, distorted,
seemingly fragmented axons days after administration of
MDMA and related drugs (O’Hearn et al, 1988; Molliver
et al, 1990; Sotelo, 1991), along with the development of
the ‘pruning’ phenomenon years after MDMA exposure
(Fischer et al, 1995), provide compelling evidence of 5-HT
axonal damage. Supporting this view is the fact that
virtually identical acute (swollen, distorted axons) and
long-term (’pruning’) effects have been reported after 5,7-

DHT and 5,6-DHT (Bjorklund et al, 1975; Wiklund et al,
1978; Bjorklund and Wiklund, 1980; Jonsson and Hallman,
1982; Jonsson, 1980; Frankfurt and Azmitia, 1984; Frankfurt
and Beaudet, 1987), as well as other established mono-
aminergic neurotoxins treatments (Tomlinson and Bennett,
1979; Jonsson and Hallman, 1982; Jonsson and Sachs, 1982;
Fritschy and Grzanna, 1992).
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Figure 10 SERT-IR axons visualized with antisera 1 and antisera 2 in the
hippocampal formation of representative control rats (a, b) and rats
previously treated with 5,7-DHT (c, d) or MDMA (e, f). Rats received 5,7-
DHT (i.c.v., 100 mg), MDMA (15mg/kg, orally, every 1.5 h� 3), or saline
and were killed 1–2 weeks after drug treatment, as described in Materials
and Methods. Compared to controls, note marked reduction in SERT-IR
axon density in hippocampus of both 5,7-DHT- and MDMA-treated rats.
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Figure 11 TPH-IR axons in the cerebral cortex (left panels) and
hippocampal formation (right panels) of rats previously treated with 5,7-
DHT (b) or MDMA (c). Rats received 5,7-DHT (i.c.v., 100 mg), MDMA
(15mg/kg, orally, every 1.5 h� 3), or saline and were killed 1–2 weeks after
drug treatment, as described in Materials and Methods. Compared to
control (top panels), note marked reduction in TPH-IR axon density in
cerebral cortex after 5,7-DHT (middle panels) or MDMA (lower panels)
treatments. Also note that the reductions in TPH parallel reductions in
SERT shown in Figures 7 and 8.

Table 1 Changes in Serotonergic Neuronal Markers in SERT-KO
Animals and in Animals Previously Treated with MDMA or 5,
7-DHT

SERT-KO MDMA 5,7-DHT

Neuronal marker

SERT + + +
[3H]paroxetine binding + + +
5-HT + + +
5-HIAA + + +
TPH Normal + +
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The previously reported failure to detect a loss of SERT
protein in Western blot analyses is not the sole reason why
some have questioned the 5-HT neurotoxic potential of
substituted amphetamines. In particular, the fact that
MDMA and structurally related drugs (PCA, FEN) do not
typically produce signs of glial activation in the context of
selective 5-HT deficits (Rowland et al, 1993; O’Callaghan
and Miller, 1994; Pubill et al, 2003; Wang et al, 2004, 2005;
Rothman et al, 2004; Thomas et al, 2004; but see Wilson
et al, 1993; Aguirre et al, 1999; Orio et al, 2004) has led
some of these investigators to reconsider the notion that
substituted amphetamines produce neurotoxic effects.
When considering these data, however, it is important to
bear in mind that the effects of established 5-HT
neurotoxins (5,7-DHT and 5,6-DHT) on glial responses
have also been largely negative, particularly in brain regions
removed from the site of intracerebral toxin injection
(Stagaard et al, 1987; Hardin et al, 1994; Rowland et al,
1993; Bendotti et al, 1994; Dugar et al, 1998; but see
Frankfurt et al, 1991; Dugar et al, 1998). Additional research
is therefore needed to more fully characterize the determi-
nants, timing, nature, and role of glial responses in the
context of selective, chemical lesions limited to fine,
relatively sparse brain 5-HT axon terminals. Such research
is likely to provide important insight into the signaling
cascade required to prompt glial activation and, as well, a
fuller understanding of the role of glia in neurodegenerative
processes.
In summary, the present results indicate that selected

substituted amphetamines (MDMA, PCA, and FEN), like the
classic 5-HT neurotoxin, 5,7-DHT, produce lasting decre-
ments in the SERT protein, as well as other markers of 5-HT
axon terminals. Further, in situ immunocytochemical
studies show that the loss of the SERT protein is
accompanied by a loss of the TPH protein, indicating that
lasting serotonergic deficits after substituted amphetamines
differ from (presumably) neuroadaptive changes in 5-HT
metabolism in SERT-KO animals, which, in the absence
of SERT, have markedly reduced concentrations of 5-HT
and 5-HIAA, but normal amounts of TPH. Thus, lasting
serotonergic deficits after substituted amphetamines are
unlikely to represent neuroadaptive metabolic responses to
changes in SERT trafficking. Taken together, the available
evidence is most compatible with the view that loss of the
SERT protein (and other 5-HT neuronal markers) after
substituted amphetamines is due to toxic insult rather than
neuroadaptation.
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