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Sir

Quantitative autoradiography is uniquely useful in being
able to show the distribution of important binding sites in
situ, at the same time providing information on their
affinities and pharmacological profiles. The results are,
however, strongly influenced by the choice of radioligands.
This is particularly relevant for the studies of glutamate
transport (Scarr et al, 2005).
GLAST (EAAT1) and GLT (EAAT2) are by far the most

abundant excitatory amino-acid transporters (EAAT’s) in
the CNS (see for reviews, Danbolt, 2001; Shigeri et al, 2004).
The principal EAAT in forebrain regions is GLT while
GLAST predominates in cerebellum (see for review,
Danbolt, 2001). The regional distribution of [3H]aspartate-
marked sites as studied by autoradiography therefore differs
from that of GLT but is remarkably similar to that of GLAST
(cerebellar cortexbforebrain structures: Killinger et al,
1996; Balcar et al, 2001; Takamoto et al, 2002; Balcar, 2002).

D-Aspartate (Davies and Johnston, 1976) has long been
used as a radioligand in autoradiographic studies (Parsons
and Rainbow, 1983; see for reviews, Balcar et al, 2001;
Balcar, 2002) mainly because Na+-dependent glutamate
transport was thought to have about equal affinity for L-
(not D-) glutamate, L-aspartate or D-aspartate (‘stereoselec-
tive anomaly’; Cooper et al, 1998; Balcar et al, 2001; Balcar,
2002). However, assumption that [3H]aspartate, in the
presence of Na+ , would always label equally well all EAAT’s
may not be correct. Affinities of L- and D-aspartate for the
[3H]aspartate-labelled binding sites are about 50 times
greater (IC50o1mM) than the corresponding affinity of
L-glutamate (Balcar et al, 2001; Takamoto et al, 2002) and

greater than the affinities of glutamate and aspartate in
uptake/transport studies (see for reviews, Bridges et al,
1999; Danbolt, 2001; Balcar et al, 2001). The high affinity
makes [3H]aspartate a convenient radioligand producing
adequate labelling at low concentrations. However, neither
the regional distribution of [3H]-aspartate binding nor,
indeed, its substrate specificity, suggest that it labels
preferentially GLT (Bridges et al, 1999; Balcar et al, 2001).
If [3H]D-aspartate labels mostly a variant of GLAST
(Takamoto et al, 2002), the autoradiography could severely
underestimate the most abundant EAAT (GLT), particularly
at the glutamatergic synapses in the cerebral cortex (Minelli
et al, 2001, Sullivan et al, 2004).
Glutamate transport may be altered in schizophrenia:

chronic neuroleptics reduce glutamate transport (Schneider
et al, 1998; De Souza et al, 1999, Schmitt et al, 2003; see for
review, Balcar and Nanitsos, 2005) while increased levels of
EAAT’s have been reported in post mortem schizophrenic
brains from nonmedicated patients (Matute et al, 2005).
Most of the changes, however, affect GLTFnot GLASTF
particularly in the cerebral cortex (rat: 70% reduction by
chronic clozapine, Melone et al, 2001, 2003; humans: GLT in
tissue from patients with schizophrenia 2–4 times greater,
compared to controls, Matute et al, 2005). Given that
binding experiments using 40 nM [3H]D-aspartate (Scarr
et al, 2005) may not adequately label the most important
glutamate transporter in the cerebral cortex (GLT),
suggesting that glutamate transport in cortical areas affected
by schizophrenia is not changed (Scarr et al, 2005) seems
premature.
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