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Epilepsy and depression are comorbid disorders, but the mechanisms underlying their relationship have not been identified. Traditionally,

many antidepressants have been thought to increase seizure incidence, although this remains controversial, and it is unclear which

medications should be used to treat individuals suffering from both epilepsy and depression. Since the neurotransmitter norepinephrine

(NE) has both antidepressant and anticonvulsant properties, we speculated that NE transporter (NET) inhibitor antidepressants might be

therapeutic candidates for comorbid individuals. To test this idea, we assessed the effects of chronic administration (via osmotic

minipump) of the selective NET inhibitor reboxetine on flurothyl-induced seizures in mice. We found that reboxetine had both

proconvulsant and anticonvulsant properties; it lowered both seizure threshold and maximal seizure severity. NET knockout (NET KO)

mice essentially phenocopied the effects of reboxetine on flurothyl-induced seizures, and the trends were extended to

pentylenetetrazole and maximal electroshock seizures (MES). Furthermore, reboxetine had no further effect in NET KO mice,

demonstrating the specificity of reboxetine for the NET. We next tested the chronic and acute effects of other classes of antidepressants

(desipramine, imipramine, sertraline, bupropion, and venlafaxine) on seizure susceptibility. Only venlafaxine was devoid of proconvulsant

activity, and retained some anticonvulsant activity. These results suggest that chronic antidepressant drug treatment has both

proconvulsant and anticonvulsant effects, and that venlafaxine is a good candidate for the treatment of epilepsy and depression

comorbidity.
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INTRODUCTION

Epilepsy and depression are comorbid diseases; depressive
disorders are the most common type of psychiatric
comorbidity in patients with epilepsy, and patients with
major depression have a higher frequency of epilepsy than
the general population (Kanner and Nieto, 1999; Harden,
2002; Kanner and Balabanov, 2002; Barry, 2003). The
mechanisms underlying this relationship, however, are
unknown. Although there is some debate about the
magnitude of the risk factors for comorbidity because of
variance in study design and diagnostic criteria, most
estimates place the risk for epileptics developing depression
and for depressed patients developing epilepsy at four- to
five-fold higher than the general population (Harden, 2002;

Kanner and Balabanov, 2002). Treating comorbid indivi-
duals can be problematic; some anticonvulsants exacerbate
depressive symptoms (Brent et al, 1987; Wiegartz et al,
1999; Kanner and Balabanov, 2002), and some antidepres-
sants (eg bupropion, clomipramine) are reported to
increase seizure susceptibility. Many of the newer anti-
depressants (eg sertraline, venlafaxine) appear safer but
have not been systematically tested (Kanner et al, 2000;
Kanner and Balabanov, 2002; Lee et al, 2003).

The neurotransmitter norepinephrine (NE) has both
antidepressant and anticonvulsant properties. Multiple lines
of evidence have accumulated over the years to suggest that
depression is associated with changes in the noradrenergic
system, while pharmacologically increasing NE potently
alleviates depression (Ressler and Nemeroff, 1999; Frazer,
2000; Brunello et al, 2002). Likewise, endogenous NE is a
critical inhibitor of seizure activity; stimulation of NE
signaling powerfully inhibits seizures, whereas depletion of
NE increases seizure susceptibility and accelerates epilepto-
genesis in nearly every animal model tested (Weinshenker
and Szot, 2002; Giorgi et al, 2004). Furthermore, the
anticonvulsant effects of multiple therapies for epilepsy
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are attenuated in rodents with NE deficiencies (Szot et al,
2001; Weinshenker and Szot, 2002; Schank et al, 2005),
demonstrating that an intact NE system is important for the
anticonvulsant activity of some epilepsy therapies.

Since NE is both antidepressant and anticonvulsant (Jobe
et al, 1999), we speculated that NET inhibitors, which
increase extracellular NE, might be ideal candidates for the
treatment of individuals suffering from both epilepsy and
depression. Acute administration of NET inhibitors is
typically anticonvulsant (McIntyre et al, 1982; Clifford
et al, 1985; Yan et al, 1993, 1998), while proconvulsant
effects have been observed in a few studies where drug was
administered chronically (McIntyre et al, 1982; Peterson
et al, 1985; Escorihuela et al, 1989; Arai et al, 2003). There
are, however, two caveats associated with these studies.
First, most of them used desipramine (DMI) as the NET
inhibitor. While DMI is a potent NET inhibitor and has
good selectivity for NET over other monoamine transpor-
ters, it antagonizes other proteins, including receptors for
histamine, acetylcholine, and adrenergic transmitters (Fra-
zer, 1997). In particular, DMI blocks a1-adrenoreceptors,
and blockade of these receptors is typically proconvulsant
(Weinshenker et al, 2001; Weinshenker and Szot, 2002).
Second, the studies using chronic administration typically
gave once daily bolus injections of drug. While this
treatment regimen may mimic human administration (ie
one pill per day), it likely produces a transient exposure
instead of the chronically high serum levels seen therapeu-
tically in patients because the half-lives of these drugs are
much shorter in rodents than they are in humans (eg
Lemberger et al, 1985; Caccia et al, 1990). Furthermore,
some of the molecular changes in the brain that are thought
to underlie the efficacy of antidepressant drugs only occur
in rodents using paradigms that mimic chronic drug serum
levels, such as osmotic minipump administration (Benman-
sour et al, 1999; Weinshenker et al, 2002).

The experiments presented here were designed to system-
atically test the effects of chronic and acute NET inhibitor
administration on seizure susceptibility. To address issues
related to drug specificity, we used the selective NET
inhibitor reboxetine, which does not interact with other
transporters or receptors (Wong et al, 2000), and NET
knockout (NET KO) mice, which have a specific deletion of
the gene encoding NET. To mimic human antidepressant
administration as closely as possible, we administered
reboxetine via osmotic minipump for 3 weeks at a dose
that produced therapeutic serum levels of drug. Finally, we
systematically tested the chronic and acute effects of
antidepressants from five other classes on seizure suscept-
ibility (DMI, tricyclic NET inhibitor; imipramine, tricyclic
NET and serotonin transporter (SERT) inhibitor, sertraline,
selective SERT inhibitor, venlafaxine, selective NET and
SERT inhibitor, and bupropion, selective NET and dopa-
mine transporter (DAT) inhibitor).

MATERIALS AND METHODS

Animals

NET KO and wild-type (WT) control mice, maintained on a
pure C57BL6/J background, were generated from NET þ /�
heterozygote breeders obtained from Mark Caron (Duke

University). NET þ /� mice were crossed, producing NET
þ /þ (WT) and NET �/� (KO) mice. WT and KO mice
were then bred separately to produce the mice used, and all
NET WT mice were age-matched to NET KO mice in the
initial reboxetine experiments. For the second set of
experiments that compared the effects of different anti-
depressant drugs, mice of a mixed C57BL/6J and 129SvEv
background were used. These mice were heterozygote (Dbh
þ /�) controls from our dopamine b-hydroxylase knockout
(Dbh �/�) colony. We originally used these mice because
we wished to include the analysis of some Dbh �/� mice
that completely lack NE (Thomas et al, 1995, 1998).
However, the Dbh �/� mice did not tolerate the minipump
surgeries well and showed signs of general malaise, and
were not included in the final analysis. Dbh þ /� mice have
normal NE levels and were indistinguishable from WT
littermates for all previously tested phenotypes, including
flurothyl seizure susceptibility (Thomas et al, 1995, 1998;
Thomas and Palmiter, 1997, Szot et al, 1999). The basal and
reboxetine-induced seizure phenotypes of Dbh þ /� mice
were also similar to those observed for the NET WT mice.
Thus, these mice were phenotypically WT. Adult male and
female mice (3–7 months old at time of seizure testing) were
used in all experiments, and control and experimental
groups were age matched. No sex or age differences were
observed and results were combined. Throughout the
course of the experiment the colony room was maintained
at 221C with lights on from 0700 to 1900. Food and water
were available ad libitum, and animals were maintained
according to guidelines outlined in the NIH Guide for Care
and Use of Laboratory Animals. All experiments were
approved by the Emory University and Georgetown
University Institutional Animal Care and Use Committees.

Drugs

Antidepressant drugs used in this study were: reboxetine
(Pfizer, Groton, CT), DMI (Sigma-Aldrich, St Louis, MO),
imipramine (Sigma-Aldrich), sertraline (Pfizer), bupropion
(Sigma-Aldrich), and venlafaxine (Wyeth, Monmouth
Junction, MJ).

Antidepressant Drug Administration

For the chronic studies, drug was administered via Alzets

osmotic minipumps (Model #2004, 0.25 ml/h, 28 d; Durect,
Cupertino, CA). Antidepressant drugs were dissolved in
either 0.9% NaCl (reboxetine, imipramine, venlafaxine,
bupropion) or an aqueous solution containing 50% ethanol
and 0.9% NaCl (DMI, sertraline), and loaded into pumps.
Minipumps containing 0.9% NaCl or an aqueous solution
containing 50% ethanol and 0.9% NaCl were used as vehicle
controls. All pumps were placed in a sterile 371C saline
bath for 2 days before implantation. Mice were anesthetized
with isoflurane and minipumps were implanted in the
intraperitoneal cavity. All mice were given buprenorphine
(2.5 mg/kg, s.c.) immediately following surgery. Flurothyl
seizure susceptibility was tested 21 days following mini-
pump implantation. For the acute studies, drug was admini-
stered i.p. 30 min prior to seizure testing.
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Seizure Testing

Flurothyl. Flurothyl seizure thresholds were determined as
described previously (Szot et al, 1999). Mice were placed in
an air-tight, clear Plexiglass chamber, and the volatile con-
vulsant flurothyl (2,2,2-trifluroethylether; Sigma-Aldrich)
was infused via syringe pump at a rate of 20 ml/min onto
filter paper from which it vaporized. The latency in seconds
to the first myoclonic jerk (MJ) and clonic–tonic seizure
(CT) was measured. MJ, the first behavioral sign of seizure,
is evidenced as a brief, large-scale muscle twitch, and is
commonly thought of as an index of seizure induction. CT,
which appears later as repetitive, full-body convulsions with
loss of posture, can be thought of as an index of seizure
generalization. Also recorded was the number of mice
progressing to tonic extension of the hindlimbs and death.
Each mouse was tested individually, removed immediately
from the chamber after completion of seizure behavior, and
received only one exposure to flurothyl.

Pentylenetetrazole (PTZ). PTZ (Sigma-Aldrich) seizure
induction was performed as previously described (Szot
et al, 1999). PTZ was administered to NET KO and WT mice
at a dose of 40 mg/kg, i.p. All mice were placed in a clear
Plexiglass chamber and closely monitored for 10 min. This
observation time was chosen because mice that displayed
seizure activity did so within the first few minutes after PTZ
administration. Latency to the first MJ and CT seizure was
recorded.

Maximal electroshock (MES). Shocks, each 0.9 ms in
duration, were delivered via ear-clip electrodes at a
frequency of 299 pulses/s for 100 ms at 20 mA using a
constant-current device (Ugo Basile ECT Unit 7801, Varese,
Italy). Seizure severity was determined by measuring the
duration of tonic hindlimb extension, flexion, and the
extension/flexion (E/F) ratio. Flexion duration was timed
from the instant the shock was delivered until the hindlimbs
went through an angle of 901 to the plane of the body and
extension was timed from that point until the hindlimbs
relaxed. As the end of extension was variable, abrupt
palpable relaxation of the body was taken as the end of the
extension phase.

Analysis of Serum Drug Levels

Trunk blood was collected in Microtainer serum tubes
(Fisher Scientific, Pittsburgh, PA) from mice either
immediately following seizure (in the cases where the
seizure was lethal) or 1–3 h following seizure (in the cases
where seizure was not fatal). Tubes were spun for 5 min at
10 K, and serum was placed in a sterile tube and stored at
�801C until analysis.

Serum concentrations of sertraline, DMI, reboxetine,
venlafaxine, imipramine, and bupropion were determined
using HPLC with UV detection (214 nm). After addition of
NaOH to buproprion, DMI, imipramine, sertraline, and
reboxetine samples, these drugs were extracted into a
mixture of 5% isopropanol/95% hexane, then back-ex-
tracted into 12 mM phosphate buffer (pH 2.5). Venlafaxine
samples were treated with saturated sodium borate solution,
extracted into ethyl ether, and then back-extracted into

10 mM HCl (pH 2.0). Extracted samples of DMI, imipra-
mine, sertraline, and reboxetine were analyzed using a
Waters Spherisorb CN column (5mm, 4.6 mm� 250 mm)
and a mobile phase containing 70% acetonitrile, 13%
methanol, and 17% of 10 mM phosphate buffer (pH 6.7).
Extracted samples of venlafaxine and bupropion were
analyzed using an Alltech Alltima C18 column (5 mm,
4.6 mm� 150 mm) and a mobile phase containing 15%
acetonitrile and 85% of 100 mM phosphate buffer (pH 2.5).
Internal standards were used for all analyses except
venlafaxine. All reagents were HPLC grade. Serum concen-
trations were expressed in ng/ml.

After pilot experiments to determine optimal doses, we
achieved serum levels that fell within or very close to human
therapeutic range for each drug, with the exception of
sertraline (Table 1). Even at the solubility limit of sertraline
(a concentration that delivered 40 mg/kg/day), the mean
sertraline level was far below human therapeutic levels and
was undetectable in some mice.

Statistics

For analyses of seizure threshold and duration, T-tests
were used to compare two groups, and one-way ANOVA
followed by Dunnett’s posthoc test was used when compar-
ing multiple groups to vehicle. For number of mice
progressing to tonic extension and death, treatment groups
were compared to controls using Fisher’s Exact Test. A P-
value of o0.05 was considered significant. Graphpad Instat
and Prism for Macintosh were used for all statistical
analysis.

RESULTS

Chronic Reboxetine Administration has Both
Proconvulsant and Anticonvulsant Effects

Most previous studies have examined the effects of acute
antidepressant administration on seizure susceptibility, and
the few that have used chronic administration employed
drugs that have targets other than the NET (eg DMI) and

Table 1 Serum Concentrations of Antidepressants

Serum level

Drug
Dose

(mg/kg/day)
Steady state

(ng/ml)
Therapeutic

(ng/ml)

Reboxetine (n¼ 19) 20 335765 100–400

Desipramine (n¼ 14) 20 275749 125–600

Imipramine (n¼ 9) 120 312738 200–300

Sertraline (n¼ 13) 40 875 30–150

Bupropion (n¼ 13) 40 76717 50–100

Venlafaxine (n¼ 11) 20 122726 100–400

Venlafaxine (n¼ 8) 40 500796 100–400

Serum concentrations (mean7SEM) of antidepressants were after 21 days of
treatments by osmotic minipump. As a reference, the human therapeutic drug
level guidelines are also listed (Baldessarini, 1989; Kaye et al, 1989; Charlier et al,
2000).
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paradigms that did not support therapeutic serum levels (eg
daily i.p. injection). To circumvent these caveats, we used a
NET inhibitor that has no other known targets (reboxetine)
and a paradigm that mimics therapeutic serum levels
(chronic infusion via osmotic minipump; Table 1). Chronic
administration of reboxetine to WT mice significantly
lowered seizure threshold (shorter latency to first MJ and
generalized CT seizure; Figure 1a), but also tended to reduce
maximal seizure severity, although the effect was not quite
significant (4/9 vehicle-treated mice died, while 0/9
reboxetine-treated mice died; P¼ 0.08 by Fisher’s Exact
Test; Table 2).

We speculated that if the effects of reboxetine on seizures
were exclusively mediated by chronic NET blockade, then
the seizure phenotype of mice completely lacking NET
(NET KO mice) would be similar to reboxetine-treated WT

mice. Furthermore, reboxetine should have no further effect
on NET KO mice. We found that, similar to WT mice
treated chronically with reboxetine, NET KO mice had
increased seizure susceptibility (significantly shorter latency
to MJ and CT; Figure 1b) and decreased maximal seizure
severity (fewer NET KO mice progressed to tonic extension
and death; Table 2). In contrast to its effects on WT mice,
reboxetine did not alter seizures in NET KO mice (Figure 1c;
Table 2). These results suggest that the effects of reboxetine
on flurothyl-induced seizures are mediated solely by NET
blockade.

We next addressed whether the effects of chronic NET
inactivation on seizure phenotypes extended to other
methods of seizure induction. We used PTZ seizure
susceptibility as an alternate measure of seizure threshold
and MES as an alternate measure of maximal seizure
severity. Both the PTZ seizure threshold phenotype and the
MES maximal seizure severity phenotypes of NET KO mice
were similar to that observed with flurothyl; NET KO mice
had a shorter latency to MJ and CT for PTZ seizures
(Figure 2) and had a shorter duration of tonic extension for
MES seizures (Figure 3). These results confirm that chronic
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Figure 1 Effects of chronic reboxetine administration and NET
genotype on flurothyl-induced seizure susceptibility. Shown is mean7SEM
latency to first myoclonic jerk (MJ) and clonic–tonic seizure (CT) after
flurothyl administration in (a) wild-type (WT) mice administered vehicle
(0.9% NaCl) or reboxetine (20mg/kg/d) via osmotic minipump for 21 d
(n¼ 9 per group; *Po0.01 compared to WT vehicle), (b) untreated WT
and NET knockout (NET KO) mice (n¼ 16 per group; *Po0.01 compared
to WT), and (c) NET KO mice administered vehicle (0.9% NaCl) or
reboxetine (20mg/kg/day) via osmotic minipump for 21 days (n¼ 5–6 per
group).

Table 2 Effects of NET Genotype and Reboxetine on Maximal
Seizure Severity

Genotype Treatment
Tonic extension

(over total)
Death

(over total)

WT None 14/16 4/16

NET KO None 3/16* 0/16

WT Vehicle 7/9 4/9

WT Reboxetine 7/9 0/9

NET KO Vehicle 0/5# 0/5

NET KO Reboxetine 0/6# 0/6

NET KO and WT control mice were either untreated for administered vehicle
or reboxetine (20mg/kg/day) via osmotic minipump for 21 days prior to seizure
induction with flurothyl. Shown is the number of mice that displayed tonic
extension and death following generalized seizure over the total number of mice
tested for each genotype and treatment group. Data were analyzed by Fisher’s
Exact Test. *Po0.01 compared to WT. #Po0.05 compared to WT vehicle.
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Figure 2 Effects of NET genotype on pentylenetetrazole-induced
seizure susceptibility. Shown is mean7SEM latency to first myoclonic jerk
(MJ) and clonic–tonic seizure (CT) in wild-type (WT) and NET knockout
(NET KO) mice after administration of pentylenetetrazole (PTZ; 40mg/kg,
i.p.; n¼ 10 per group; *Po0.05, **Po0.01 compared to WT).
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NET inactivation has both proconvulsant (lowering of
seizure threshold) and anticonvulsant (reduction of max-
imal seizure severity) properties.

Effects of Chronic Antidepressant Drug Treatment on
Seizure Susceptibility

Our results suggest that, contrary to our hypothesis,
reboxetine is not a good candidate to treat comorbid
depression and epilepsy due to its proconvulsant effects. To
determine whether a different type of antidepressant would
be a better therapeutic candidate, we tested the effects of
chronic treatment with a tricyclic NET inhibitor (DMI), a
tricyclic NET and SERT inhibitor (imipramine), a selective
SERT inhibitor (sertraline), a selective NET and DAT
inhibitor (bupropion), and a selective NET and SERT
inhibitor (venlafaxine) on flurothyl seizure susceptibility.
We achieved therapeutic serum levels with all antidepres-
sants tested except sertraline (Table 1). We found that, like
reboxetine, DMI and imipramine lowered seizure threshold
(significantly reduced latency to MJ, strong trend towards
reducing latency to CT), while sertraline, bupropion, and
venlafaxine had no effect (Figure 4). As we observed
previously, reboxetine had an anticonvulsant effect in terms
of seizure severity (reduced number of mice progressing to
death; Table 3). DMI also tended to reduce seizure severity,
but the results did not quite reach significance (P¼ 0.07 for
both tonic extension and death by Fisher’s Exact Test;
Table 3).

Since the NET and SERT inhibitor imipramine had
proconvulsant properties, we were intrigued by the lack of a
proconvulsant effect for the NET and SERT inhibitor
venlafaxine. Although venlafaxine serum levels were in
therapeutic range, they were on the low end (Table 1). To
determine whether a higher dose of venlafaxine would be
proconvulsant, we doubled the venlafaxine dose from 20 to
40 mg/kg/day, which elevated serum drug levels from 122 to
500 ng/ml, and retested seizure susceptibility. The higher
dose of venlafaxine still did not significantly lower seizure
thresholds (Figure 4), and in fact tended to decrease
maximal seizure severity (fewer mice died; P¼ 0.09 by
Fisher’s Exact Test; Table 3). These results suggest that the

effects of venlafaxine in the brain are fundamentally
different in some way from imipramine.

Effects of Acute Antidepressant Drug Treatment on
Seizure Susceptibility

In order to compare the effects of chronic and acute
antidepressant treatment on seizure susceptibility, we
administered each antidepressant (a single i.p. bolus of
the chronic therapeutic daily dose) to seizure-naı̈ve mice
30 min prior to induction of seizures with flurothyl. In
contrast to the effects of chronic treatment, most of the
antidepressants did not significantly affect seizure thresh-
olds (Figure 5). The one exception was sertraline, which was
profoundly proconvulsant. Reboxetine and the lower dose
of venlafaxine reduced the number of mice that died, while
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Figure 3 Effects of NET genotype on maximal electroshock seizures.
Shown is mean7SEM duration of tonic extension, flexion, and the tonic
extension/flexion ratio in wild-type (WT) and NET knockout (NET KO)
mice after seizure induction with maximal electroshock (MES; n¼ 13–18
per group; *Po0.01 compared to WT).

Table 3 Effects of Chronic Antidepressant Treatment on Maximal
Seizure Severity

Drug
Dose

(mg/kg/day)
Tonic extension

(over total)
Death

(over total)

Vehicle NA 15/16 12/16

Reboxetine 20 10/10 0/10*

Desipramine 20 4/7 2/7

Imipramine 120 5/7 4/7

Sertraline 40 4/7 4/7

Bupropion 40 9/12 7/12

Venlafaxine 20 7/9 5/9

Venlafaxine 40 6/8 3/8

Antidepressants were administered via osmotic minipump for 21 days prior to
seizure induction with flurothyl. Shown are the number of mice that displayed
tonic extension and death following generalized seizure over the total number
of mice tested for each drug. Data were analyzed by Fisher’s Exact Test.
*Po0.05 compared to vehicle control.
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Figure 4 Effects of chronic antidepressant drug treatment on flurothyl-
induced seizure susceptibility. Shown is mean7SEM latency to first
myoclonic jerk (MJ) and clonic–tonic seizure (CT) after flurothyl
administration in mice administered vehicle (0.9% NaCl or 50% EtOH in
0.9% NaCl), reboxetine (RBX; 20mg/kg/day), desipramine (DMI; 20mg/kg/
day), imipramine (IMI; 120mg/kg/day), sertraline (SER; 40mg/kg/day),
bupropion (BUP; 40mg/kg/day), or venlafaxine (VEN20; 20mg/kg/day,
VEN40; 40mg/kg/day) via osmotic minipump for 21 d (n¼ 7–15 per group;
*Po0.01 compared to vehicle).
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the higher dose of venlafaxine suppressed both tonic
extension and death (Table 4). Sertraline and bupropion
also appeared to reduce maximal seizure severity, but that
result is somewhat deceiving. Mice treated with vehicle
or other antidepressants that did not progress to tonic
extension typically had one short (B10 s) CT seizure, and
then entered a prolonged postictal period with no obvious
seizure activity. For this reason, mice are removed from the
flurothyl chamber after 10 min (Szot et al, 1999) and thus
the numbers listed in Table 4 are for the first 10 min after
flurothyl administration. In contrast, after the first CT
seizure, sertraline- or bupropion-treated mice entered a
state of status epilepticus; they had repeated CT seizure
activity that continued for up to B20 min, at which time
most of them went into tonic extension and died (data not
shown).

DISCUSSION

Chronic NET Inactivation has Both Proconvulsant and
Anticonvulsant Effects

Since NE is anticonvulsant in nearly all known seizure
models (Weinshenker and Szot, 2002), we speculated that
NET inhibitors, which increase extracellular NE, would
suppress seizures. In support of this hypothesis, we found
that the selective NET inhibitor reboxetine reduced max-
imal flurothyl seizure severity when administered both
chronically and acutely. Flurothyl and MES seizures in NET
KO mice were also less severe, and reboxetine had no
further effect in NET KO mice. Thus, as predicted, selective
genetic or pharmacological inactivation of NET had anti-
convulsant properties.

Paradoxically, chronic NET inactivation was also pro-
convulsant, as both NET KO and reboxetine-treated WT
mice had a reduction in seizure threshold. How can we
reconcile the anticonvulsant effect of NE and the procon-
vulsant effect of NET blockade, which increases extracel-

lular NE? One clue is that while both chronic and acute NET
blockade elevate extracellular NE, acute blockade of NET
lacked the proconvulsant effect on seizure threshold but
retained the ability to suppress seizure severity. This result
indicates that increasing NE is not proconvulsant per se,
but rather suggests that chronic NET blockade activates
compensatory mechanisms that are proconvulsant. It is well
established that chronic but not acute NET inactivation
results in many changes in the noradrenergic system,
including a downregulation of tyrosine hydroxylase (the
rate-limiting enzyme in NE synthesis; Nestler et al, 1990),
burst firing of the locus coeruleus (LC, the major brain
noradrenergic cell group; Grant and Weiss, 2001), the NET
(Benmansour et al, 1999; Weinshenker et al, 2002), and
adrenergic receptors (Bergstrom and Kellar, 1979; Xu et al,
2000; Invernizzi and Garattini, 2004). A decrease in LC
activity after chronic NET blockade was associated with an
increase in the activity of hippocampal neurons that
received noradrenergic innervation (Huang et al, 1980),
and hippocampal hyperexcitability often contributes to
seizures. Finally, an increase in extracellular NE could
enhance the activation of inhibitory a2-adrenergic auto-
receptors. Thus, although basal extracellular NE levels are
elevated, chronic NET blockade may result in an overall
decrease in NE signaling under some conditions, which
could produce a proconvulsant effect. Another intriguing
possibility is the interaction between the noradrenergic and
GABAergic systems. NE can enhance hippocampal GABA
function, and some studies have shown that chronic
antidepressant treatment downregulates not only adrener-
gic receptors but also GABAA receptors (Suzdak and
Gianutsos, 1985; Dennis et al, 1994; Sanacora et al, 2000).
A decrease in GABA function could contribute to the
proconvulsant effects of antidepressants.

In the preceding two paragraphs, we have presented
evidence that chronic NET blockade could have anti-
convulsant and proconvulsant effects, but how can we

Table 4 Effects of Acute Antidepressant Treatment on Maximal
Seizure Severity

Drug
Dose

(mg/kg/day)
Tonic extension

(over total)
Death

(over total)

Vehicle NA 11/11 10/11

Reboxetine 20 8/8 3/8*

Desipramine 20 7/8 7/8

Imipramine 120 NA NA

Sertraline 40 1/6*,a 1/6*,a

Bupropion 40 1/8*,a 0/8*,a

Venlafaxine 20 8/8 3/8*

Venlafaxine 40 2/8* 1/8*

Antidepressants were administered via i.p. injection 30min prior to seizures
induction with flurothyl. Shown are the number of mice that displayed tonic
extension and death following generalized seizure over the total number of mice
tested for each drug. Mice given imipramine were not tested for seizure
susceptibility because they displayed ataxia and sedation following drug
administration. Data were analyzed by Fisher’s Exact Test. *Po0.01 compared
to vehicle control.
aDenotes drugs that induced status epilepticus.
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Figure 5 Effects of acute antidepressant drug treatment on flurothyl-
induced seizure susceptibility. Shown is mean7SEM latency to first
myoclonic jerk (MJ) and clonic–tonic seizure (CT) in mice administered
vehicle (0.9% NaCl), reboxetine (RBX; 20mg/kg), desipramine (DMI;
20mg/kg), sertraline (SER; 40mg/kg), bupropion (BUP; 40mg/kg), or
venlafaxine (VEN20; 20mg/kg, VEN40; 40mg/kg) via i.p. injection 30min
prior to seizure induction with flurothyl (n¼ 6–11 per group; *Po0.05
compared to vehicle).
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explain both effects occurring essentially simultaneously?
The proconvulsant effect of chronic NET inactivation is
most evident for moderate clonic seizures (MJ), while the
anticonvulsant effect is restricted to very severe seizures
(tonic extension, death). One possibility is that different
brain regions are involved. It is generally accepted that
forelimb clonic seizures (eg MJ, rearing, and falling
seizures) and hindlimb tonic seizures have partially over-
lapping but distinct anatomical substrates; clonic seizures
predominantly activate forebrain regions, while tonic
seizures also recruit brainstem structures (Browning, 1994;
Eells et al, 2004). The effects of chronic NET blockade on
NE signaling may differ between forebrain and brainstem
regions. In support of this hypothesis, the decrease in b1-
adrenergic receptors observed after chronic DMI treatment
was much more evident in the cortex compared to
subcortical regions (Bergstrom and Kellar, 1979), and a2-
adrenergic receptor desensitization after chronic reboxetine
was observed in the hippocampus but not the LC (Parini
et al, 2005). Our results suggest that the compensatory
downregulation of NE signaling may preferentially occur in
the forebrain. Another possibility is the involvement of
noradrenergic cotransmitters. LC neurons coexpress anti-
convulsant neuropeptides such as NPY and galanin. Since
neuropeptides are typically released under conditions of
very high neuronal excitability, NPY and galanin may be
preferentially released from LC neurons to prevent severe
brainstem seizures under our experimental conditions. In
support of this idea, the activation of LC neurons is much
greater during brainstem tonic seizures than during
forebrain clonic seizures (Eells et al, 2004).

Therapeutic Implications

Although depression is the most common comorbid
psychiatric disorder in epilepsy, it is still severely under-
diagnosed and undertreated in the epileptic population
(Wiegartz et al, 1999; Harden, 2002; Kanner and Balabanov,
2002). Since depression appears to have a much greater
impact on the quality of life of epileptic individuals than
seizure frequency or severity (Johnson et al, 2004; Boylan
et al, 2004), finding safe and effective treatment is critical.
Historically, this has been problematic because some
antidepressants exacerbate seizures, especially when drug
doses are high (Pisani et al, 1999). SSRIs are typically
recommended for alleviating depressive symptoms in
epileptics, and appear to be relatively safe (Kanner and
Nieto, 1999; Kanner et al, 2000; Pisani et al, 2002; Isbister
et al, 2004), although some preclinical studies have
suggested otherwise (Raju et al, 1999; Zienowicz et al,
2005). We were unable to test the effects of chronic
sertraline administration due to rapid metabolism and/or
excretion that precluded the maintenance of human
therapeutic serum levels in the mice, but a high dose
administered acutely was proconvulsant.

We speculated that selective NE reuptake inhibitors might
be good candidates for treating comorbid individuals
because NE has both antidepressant and anticonvulsant
properties. However, we found that the selective NET
blocker reboxetine possessed proconvulsant properties
when administered chronically, as did the tricyclic DMI,
probably due to compensatory mechanisms activated by

chronic administration. Therefore, NET inhibitor anti-
depressants may not be safe for use in seizure-prone
individuals.

There have been few systematic, preclinical comparisons
of different classes of antidepressant drugs on seizure
susceptibility, and none to our knowledge has utilized
chronic administration at therapeutic serum drug levels. We
found that chronic administration reboxetine, DMI, and
imipramine had proconvulsant effects. In addition, acute
administration of bupropion or sertraline was proconvul-
sant, and a seizure risk has been documented clinically for
bupropion (Richmond and Zwar, 2003). The only anti-
depressant in our study that was devoid of significant
proconvulsant effects was the selective NET/SERT inhibitor
venlafaxine, even when administered at a relatively high
dose. Venlafaxine is of considerable interest because, unlike
other NET inhibitors like reboxetine, DMI, and imipramine,
it does not cause a downregulation in NET density in rats
after chronic administration, and the lack of effect on the
NET cannot be attributed to its dual reuptake-inhibiting
properties (Gould et al, 2004). Venlafaxine may interact
with the NET and the noradrenergic system in a novel way,
and it is possible that venlafaxine’s lack of proconvulsant
activity is related to this difference. Like many antidepres-
sants, venlafaxine overdose has occasionally been reported
to cause seizures, but it appears to be safe at therapeutic
doses (White et al, 1997; Pisani et al, 2002). Our results
suggest that venlafaxine warrants further investigation as a
treatment for depression in the epileptic population.

In general, most antidepressants appear to be proconvul-
sant under some conditions. Therefore, it may be wise to
explore alternative treatments for depression in comorbid
individuals (Barry, 2003). Vagus nerve stimulation and the
ketogenic diet were originally developed to treat epilepsy,
and both treatments also appear to have antidepressant
properties (El-Mallakh and Paskitti, 2001; Krahl et al, 2004;
Murphy et al, 2004; Schachter, 2004). Interestingly, an intact
noradrenergic system is critical for the anticonvulsant
effect of vagus nerve stimulation and the ketogenic diet
(Krahl et al, 1998; Szot et al, 2001). Thus, despite the
proconvulsant properties of chronic NET inhibition,
increasing NE signaling may still represent an effective
therapy for epilepsy and depression comorbidity.
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