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The effects of chronic lithium administration on regional brain incorporation coefficients k* of arachidonic acid (AA), a marker of

phospholipase A2 (PLA2) activation, were determined in unanesthetized rats administered i.p. saline or 1mg/kg i.p. (7)-1-(2,5-

dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), a 5-HT2A/2C receptor agonist. After injecting [1-14C]AA intravenously,

k* (brain radioactivity/integrated plasma radioactivity) was measured in each of 94 brain regions by quantitative autoradiography. Studies

were performed in rats fed a LiCl or a control diet for 6 weeks. In the control diet rats, DOI significantly increased k* in widespread brain

areas containing 5-HT2A/2C receptors. In the LiCl-fed rats, the significant positive k* response to DOI did not differ from that in control

diet rats in most brain regions, except in auditory and visual areas, where the response was absent. LiCl did not change the head turning

response to DOI seen in control rats. In summary, LiCl feeding blocked PLA2-mediated signal involving AA in response to DOI in visual

and auditory regions, but not generally elsewhere. These selective effects may be related to lithium’s therapeutic efficacy in patients with

bipolar disorder, particularly its ability to ameliorate hallucinations in that disease.
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INTRODUCTION

Lithium has been used to treat bipolar disorder for about 50
years, but its mechanism of action is not agreed on (Barchas
et al, 1994; Cade, 1999). One suggestion is that it modifies
neurotransmission imbalances that contribute to the disease
(Bymaster and Felder, 2002; Janowsky and Overstreet,
1995). Evidence that cholinomimetics as well drugs that
inhibit dopaminergic transmission have an antimanic
action in bipolar disorder suggest that the imbalances
involve reduced cholinergic transmission and increased
dopaminergic neurotransmission (Bunney and Garland-
Bunney, 1987; Bymaster and Felder, 2002; Fisher et al, 1991;
Janowsky and Overstreet, 1995; Peet and Peters, 1995; Post
et al, 1980; Sultzer and Cummings, 1989). Additionally,
reduced serotonergic (5-HT) transmission is suggested by
observations that depressed or euthymic bipolar disorder
patients have low brain concentrations of serotonin (5-HT)
and its metabolites, and fewer brain 5-HT reuptake sites

(Mahmood and Silverstone, 2001). Clinical data also
implicate disturbed glutamatergic transmission via NMDA
receptors (Itokawa et al, 2003; Mundo et al, 2003; Scarr et al,
2003).
Some reported effects of lithium in rats are consistent

with it ameliorating the suggested neurotransmission
imbalances of bipolar disorder. Thus, lithium reduces the
convulsant threshold to cholinomimetics (Evans et al, 1990;
Jope, 1993; Lerer, 1985; Morrisett et al, 1987), consistent
with it potentiating cholinergic neurotransmission. Lithium
also appears to downregulate dopaminergic transmission,
by reducing brain dopamine synthesis (Engel and Berggren,
1980) and altering the affinity of the presynaptic dopamine
reuptake transporter for dopamine (Carli et al, 1997).
Additionally, lithium feeding augments 5-HT2A/2C agonist-
induced locomotor activity, phosphoinositide-linked 5-HT-
receptor stimulation, and 5-HT agonist induced Fos-like
immunoreactivity throughout the cerebral cortex (Moor-
man and Leslie, 1998; Williams and Jope, 1994; Williams
and Jope, 1995). It does not reduce the convulsant threshold
to NMDA (Ormandy et al, 1991).
Agonist binding to certain neuroreceptors can activate

phospholipase A2 (PLA2) to release the second messenger,
arachidonic acid (AA, 20:4 n:6), from the stereospecifically
numbered (sn)-2 position of membrane phospholipids
(Axelrod, 1995). Receptors that are coupled to PLA2 via G-
proteins include muscarinic M1,3,5 receptors, dopaminergic
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D2 receptors, and 5-HT2A/2C receptors (Axelrod, 1995;
Bayon et al, 1997; Felder et al, 1990; Vial and Piomelli,
1995), whereas NMDA receptors are coupled by allowing
Ca2þ into the cell (Lazarewicz et al, 1990; Weichel et al,
1999). The released AA and its bioactive eicosanoid
metabolites can influence many physiological processes,
including membrane excitability, gene transcription, apop-
tosis, sleep, and behavior (Fitzpatrick and Soberman, 2001;
Shimizu and Wolfe, 1990).
A fraction of the AA that is released by PLA2 activation

will be rapidly reincorporated into phospholipid, whereas
the remainder will be lost by conversion to eicosanoids or
other products, or by b-oxidation (Rapoport, 2001;
Rapoport, 2003). Unesterified AA in plasma rapidly replaces
the amount lost, as AA is nutritionally essential and cannot
be synthesized de novo in vertebrate tissue (Holman, 1986).
Replacement is proportional to PLA2 activation and can be
imaged in vivo by injecting radiolabeled AA intravenously,
then measuring regional brain radioactivity by quantitative
autoradiography. A regional AA incorporation coefficient
k* (regional brain radioactivity/integrated plasma radio-
activity), calculated in this way, has been shown to be
independent of changes in cerebral blood flow and to
represent plasma-derived AA reincorporated in phospholi-
pids (Basselin et al, 2003a; Chang et al, 1997; DeGeorge et al,
1991; Rapoport, 2001; Rapoport, 2003; Robinson et al,
1992).
To test the hypothesis that lithium acts in bipolar

disorder by correcting its neurotransmission imbalances
(see above), and to see if these imbalances might involve
neuroreceptor-initiated signaling via AA, we first imaged
the effect of LiCl feeding on k* for AA in different brain
regions of unanesthetized rats administered arecoline, an
agonist of cholinergic muscarinic receptors that can be
coupled to PLA2 (Basselin et al, 2003b; Bayon et al, 1997;
DeGeorge et al, 1991). Consistent with the hypothesis, the
LiCl diet compared with control diet potentiated arecoline-
induced increases in k* for AA in 52 of 85 brain regions
examined.
In this paper, we evaluated lithium’s ability to modify k*

for AA in rats administered the 5-HT2A/2C receptor agonist,
(7)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hy-
drochloride (DOI). DOI, a hallucinogen (Sadzot et al,
1989), has a high and equal affinity for 5-HT2A and 5-HT2C

receptors (http://kidb.cwru.edu/pdsp/php, 2003), which can
be coupled to PLA2 (Bayon et al, 1997; Qu et al, 2003). We
chose a DOI dose of 1mg/kg i.p. rather than the 2.5mg/kg
that we used previously (Qu et al, 2003), since the latter
dose produced large increments (about 60%) in k* and we
wished a more graded response to minimize any interac-
tions between DOI and lower affinity non-5-HT2A/2C

receptors (Abi-Saab et al, 1999; Kuroki et al, 2003; Obata
et al, 2003; Ramirez et al, 1997; Scruggs et al, 2000).
Furthermore, 1mg/kg DOI is reported to have significant
central effects in rats (Bull et al, 2004; Ichikawa et al, 2002).

MATERIALS AND METHODS

Animals and Diets

Experiments were conducted following the ‘Guide for the
Care and Use of Laboratory Animals’ (National Institute of

Health Publication No. 86-23) and were approved by the
Animal Care and Use Committee of the National Institute of
Child Health and Development (NICHD). Male Fischer CDF
(F-344)/CrlBR rats (Charles River Laboratories, Wilming-
ton, MA), 2-month old and weighing 180–200 g, were
housed in an animal facility in which temperature,
humidity, and light cycle were regulated. One group of rats
was fed ad libitum Purina Rat Chow (Harlan Telkad,
Madison, WI) containing 1.70 g LiCl/kg for 4 weeks,
followed by a diet containing 2.55 g LiCl/kg for 2 weeks
(Basselin et al, 2003b). This feeding regimen produces
‘therapeutically equivalent’ plasma and brain lithium levels
of about 0.7mM (Bosetti et al, 2002; Chang et al, 1996).
Control rats were fed lithium-free Purina rat chow under
parallel conditions. Water and NaCl solution (0.45M) were
available ad libitum to both groups.

Drugs

Unanesthetized rats received 0.3ml i.p. 0.9% NaCl (saline)
(Abbott Laboratories, North Chicago, IL) or 1mg/kg i.p.
DOI (RBI Signaling Innovation, Sigma-Aldrich, Natick, MA)
in 0.3ml saline. [1-14C]AA in ethanol (53mCi/mmol; 99.4%
pure, Moravek Biomedicals, Brea, CA) was evaporated and
suspended in 5mM HEPES buffer, pH 7.4, which contained
50mg/ml of bovine serum albumin (Sigma-Aldrich). Tracer
purity, which exceeded 98%, was ascertained by gas-liquid
chromatography after converting it to its methyl ester with
1% sulfuric acid in anhydrous methanol (Makrides et al,
1994).

Surgical Procedures and Tracer Infusion

After 6 weeks on a control or a LiCl diet, a rat was
anesthetized with 2–3% halothane in O2, and polyethylene
catheters were inserted into the left femoral artery and vein,
as described previously (Basselin et al, 2003b). The wound
was closed and the rat was wrapped loosely, with its upper
body remaining free, in a fast-setting plaster cast taped to a
wooden block. It was allowed to recover from anesthesia for
3–4 h, while its body temperature was maintained at 371C.
Mean arterial blood pressure, heart rate and rectal
temperature were monitored before and after injecting
either saline or DOI. Head-turning behavior also was
recorded.
Twenty min after an i.p. saline or DOI injection, the rat

was infused for 5min through the femoral vein with 2ml
[1-14C]AA (170 mCi/kg) at a rate of 400 ml/min (Basselin et al,
2003b). Timed arterial blood samples were collected from
the start of infusion to time of death at 20min. The samples
were centrifuged and plasma was removed to measure
[1-14C]AA radioactivity. At 20min, the rat was killed by an
overdose (50mg/kg i.v.) of sodium pentobarbital (Rich-
mond Veterinary Supply, Richmond, VA) and decapitated.
The brain was removed, frozen in 2-methylbutane at �401C,
and stored at �801C for quantitative autoradiography.

Chemical Analysis

The arterial plasma samples (30 ml) were extracted with 3ml
CHCl3 :MeOH (2 : 1, v/v) and 1.5ml 0.1M KCl (Folch et al,
1957). AA concentrations were determined in 100 ml of the
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lower organic phase by liquid scintillation counting. The
percent efficiency for 14C counting was 88%.

Quantitative Autoradiography

Frozen brains were cut in serial 20 mm thick sections on a
cryostat, then placed for 6 weeks together with calibrated
[14C]methylmethacrylate standards on autoradiographic
film in an X-ray cassette (Basselin et al, 2003b). A total of
94 brain regions were identified by comparing the
autoradiographs with an atlas of the rat brain (Paxinos
and Watson, 1987). Regional brain radioactivities,
c�brainð20minÞ nCi/g, were determined by densitometry
using the NIH image analysis program (Version 6.5) created
by Wayne Rasband (National Institutes of Health) (Basselin
et al, 2003b). Regional incorporation coefficients k* (ml/s/g
brain) of AA were calculated as,

k� ¼ c�brainð20minÞ
R20

0

c�plasma dt

ð1Þ

where c�plasma equals plasma radioactivity determined by
scintillation counting (nCi/ml) and t equals time (min) after
beginning of [1-14C] AA infusion.

Statistical Analysis

A two-way Analysis of Variance (ANOVA), comparing Diet
(LiCl vs control) with Drug (DOI vs saline), was performed
for each brain region using SPSS 10.0 for Macintosh (SPSS
Inc., Chicago, IL, and http://www.spss.com). At regions in
which Diet�Drug interactions were statistically insignif-
icant, probabilities of main effects of Diet and of Drug were
separately calculated (Tabachnick and Fidell, 2001). At
regions in which interactions were statistically significant,
these probabilities were not calculated because they cannot
be interpreted with certainty. Instead, unpaired t-tests were
used to test for individual significant differences between
means. Data are reported as means7s.d., with statistical
significance taken as pp0.05.

RESULTS

Physiological Parameters

LiCl-fed rats had a 15% lower mean body weight compared
with control diet-fed rats (25779 g vs 303710 g, po0.0001,
n¼ 17). Such a reduction has been ascribed to uncompen-
sated polyuria (Teixeira and Karniol, 1982). LiCl feeding did
not significantly affect mean arterial blood pressure, heart
rate, or body temperature (data not shown). DOI compared
with saline increased mean blood pressure by 26% and
decreased mean heart rate by 18% to the same extents in the
LiCl and control diet groups (po0.0001, n¼ 8–9). These
effects have been ascribed to stimulation of central and
peripheral 5-HT2 receptors (Chaouche-Teyara et al, 1993;
Dedeoglu and Fisher, 1991; Freo et al, 1991; Rittenhouse
et al, 1991). DOI also produced periods of ventral, dorsal,
and lateral head movements, as previously reported
(Kitamura et al, 2002). In the 20min following DOI, the
mean number of head-movement periods, each lasting
about 30 s, did not differ significantly (p40.05) between the

LiCl and control diet rats (3374 (n¼ 9) in LiCl-fed rats and
3975 (n¼ 8) in control diet rats).

Regional Brain AA Incorporation Coefficients

Figure 1 illustrates color-coded values for k* for AA, in
autoradiographs of brain coronal sections from rats fed a
control diet and administered saline (a) or DOI (b); or fed a
LiCl diet and administered saline (c) or DOI (d). The mean
values for k* in each of 94 brain regions, collated from all
autoradiographs, are presented in Table 1. Data for each
region in the table were subjected to a two-way ANOVA.
Probabilities for main effects were determined in regions in
which Diet�Drug interactions were statistically insignif-
icant. In regions where interactions were significant,
unpaired t-tests were used to compare diet and drug
effects separately (asterisks and crosses in Table 1). In areas
in which the increments were statistically significant (by
t-tests) in control animals, DOI increased the means by
39% on average.

Insignificant Diet�Drug Interactions

Of the 94 regions examined, 70 had a statistically
insignificant Diet (LiCl diet vs control diet)�Drug (DOI

Figure 1 Effects of acute DOI administration and LiCl feeding on
arachidonic acid incorporation coefficients k* in 94 brain regions of
unanesthetized rats. Abbreviations: Aud ctx, auditory cortex; CPU, caudate
putamen; DLG, dorsal lateral geniculate; Fr, frontal cortex; InfCol, Inferior
colliculus; IPC, interpeduncular nucleus central; MG, geniculate medial; Mot
ctx, motor cortex; PFr, prefrontal cortex; Pir ctx, pyriform cortex; SNC,
substantia nigra pars compacta; SNR, substantia nigra pars reticulata; Som
ctx, somatosensory cortex; Vis ctx, visual cortex.
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Table 1 Arachidonic Acid Incorporation Coefficients 1k* in Control Diet-Fed and LiCl-Fed Rats, at Baseline (in Response to Saline) and in Response to DOI

Control diet LiCl diet
LiCl diet�DOI interaction LiCl effect DOI effect

Brain region Saline (n¼8) DOI 1mg/kg (n¼9) Saline (n¼8) DOI 1mg/kg (n¼9) P-value P-value P-value

Prefrontal cortex layer I 6.5871.36 7.4170.59 5.5870.47 7.7371.34 0.049

Prefrontal cortex layer IV 6.2771.19 8.0470.82 5.4970.44 7.9271.26 0.269 0.156 o0.001

Primary olfactory cortex 6.1371.02 6.9171.09 5.2370.77 6.5471.02 0.568 0.177 0.031

Frontal cortex (10)

Layer I 6.1971.19 8.1070.52 5.9470.46 8.1170.87 0.649 0.661 o0.001

Layer IV 6.0071.04 8.9971.20 5.9470.70 8.1770.96 0.269 0.208 o0.001

Frontal cortex (8)

Layer I 6.1270.53 7.9670.54 5.9870.75 8.1870.83 0.429 0.864 o0.001

Layer IV 6.6071.17 8.7370.69 6.2370.77 7.9771.15 0.551 0.102 o0.001

Pyriform cortex 5.2870.94 6.1170.78 5.1070.51 5.9571.63 0.176 0.080 0.001

Anterior cingulate cortex 7.0371.09 9.8171.08 7.6570.66 9.3370.94 0.120 0.753 o0.001

Motor cortex

Layer I 6.3370.78 7.6870.76 6.0170.91 8.4671.16 0.165 0.699 o0.001

Layer II–III 6.4770.74 7.8270.44 6.0170.87 8.4370.99 0.058 0.787 o0.001

Layer IV 6.5670.87 8.7270.88 6.4270.87 9.2570.75 0.257 0.520 o0.001

Layer V 5.2670.57 6.2970.67 5.1070.79 6.6671.01 0.345 0.706 o0.001

Layer VI 5.0970.51 6.1270.48 4.9470.78 6.5971.08 0.247 0.539 o0.001

Somatosensory cortex

Layer I 6.4070.76 8.3471.06 5.9870.86 8.3870.77 0.493 0.567 o0.001

Layer II–III 6.3170.46 8.5170.82 6.1570.84 8.8870.73 0.302 0.683 o0.001

Layer IV 6.6070.69 9.2070.68 6.8870.81 9.2670.87 0.683 0.523 o0.001

Layer V 6.2070.59 7.5670.61 5.9670.69 8.0371.38 0.260 0.696 o0.001

Layer VI 6.3070.75 7.3370.56 5.7470.68 7.7271.57 0.174 0.795 o0.001

Auditory cortex

Layer I 6.7370.83 7.7970.76* 10.3271.07www 9.6271.02 0.010

Layer IV 7.2770.93 8.8371.23 11.6271.53 11.4871.16 0.053 o0.001 0.107

Layer VI 7.0870.53 7.5170.56 9.8871.83 9.5371.10 0.321 o0.001 0.929

Visual cortex

Layer I 5.9870.37 7.7270.62*** 9.6271.54www 9.0971.20 0.003

Layer IV 6.3770.44 8.6070.92*** 10.4871.57www 10.2571.21 0.003

Layer VI 5.6670.35 7.9070.73*** 9.9371.25www 9.6370.89 o0.001
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Preoptic area (LPO/MPO) 5.4870.39 6.4770.82 5.6570.93 6.5271.06 0.848 0.708 0.003

Suprachiasmatic nu 5.5370.42 6.8070.88 5.6370.90 6.4870.86 0.430 0.684 o0.001

Globus pallidus 5.0270.41 5.5670.81 5.3070.85 6.6871.29 0.181 0.033 0.005

Bed nu stria terminalis 5.4070.39 6.4970.61 5.6570.72 6.5371.04 0.701 0.575 0.001

Olfactory tubercle 6.7470.57 7.4070.28 6.4770.97 7.6470.94 0.347 0.069 o0.001

Diagonal band dorsal 6.5370.89 6.9170.88 5.7471.10 7.3671.53 0.122 0.669 0.016

Diagonal band ventral 5.4370.47 6.5971.40 4.8870.77 6.6471.49 0.458 0.545 0.001

Amygdala basolat/med 4.9670.63 7.0770.67 5.0370.76 7.8471.64 0.332 0.247 o0.001

Hippocampus

CA1 4.4670.79 6.2470.69 4.9470.67 7.3071.18 0.339 0.014 o0.001

CA2 4.4370.75 6.3970.52 4.8870.66 7.5371.09 0.214 0.007 o0.001

CA3 4.7970.70 6.6770.55 4.8770.66 7.7271.23 0.100 0.059 o0.001

Dentate gyrus 5.3870.54 7.4870.60 4.9270.74 7.8771.01 0.185 0.899 o0.001

Accumbens nucleus 5.8870.49 7.3570.81 5.5270.68 6.8671.55 0.851 0.227 o0.001

Anterior commissure 5.9770.77 7.3770.85 5.9670.45 6.9771.51 0.841 0.301 o0.001

Caudate putamen

Dorsal 5.8670.56 7.5670.84 5.3570.48 7.9670.95 0.087 0.823 o0.001

Ventral 5.8770.55 7.4870.78 5.3470.49 7.7271.11 0.169 0.600 o0.001

Lateral 5.9670.26 7.4470.66 5.4370.48 7.7671.08 0.217 0.431 o0.001

Medial 5.9870.38 7.5170.81 5.3670.46 7.8271.03 0.060 0.461 o0.001

Septal nu lateral 5.1770.29 6.4271.01 5.4470.54 6.5671.37 0.853 0.795 o0.001

Septal nu medial 5.6170.61 6.9670.80 5.8070.68 7.0571.42 0.880 0.669 o0.001

Entopeduncular nu 4.9970.41 5.5570.90 5.3670.86 5.3770.51 0.262 0.706 0.251

Diencephalon

Habenular nu lateral 7.2470.98 8.8471.07 10.2171.93 10.5371.21 0.171 o0.001 0.044

Habenular nu medial 7.7270.97 8.7671.02 10.1171.46 10.3270.88 0.278 o0.001 0.108

Lateral geniculate nu dorsal 6.6871.07 8.9471.27** 9.5371.22www 9.6670.63 0.007

Medial geniculate nu 5.8070.62 7.9670.78*** 9.8371.59www 9.4570.78 0.001

Thalamus

Ventroposterior lat nu 6.4770.51 8.6171.26 5.9570.90 9.1871.74 0.202 0.959 o0.001

Ventroposterior med nu 6.5570.65 8.6171.24 6.1970.63 9.3670.87 0.080 0.529 o0.001

Table 1 Continued

Control diet LiCl diet
LiCl diet�DOI interaction LiCl effect DOI effect

Brain region Saline (n¼8) DOI 1mg/kg (n¼ 9) Saline (n¼ 8) DOI 1mg/kg (n¼9) P-value P-value P-value
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Paratenial nu 6.4770.66 7.3970.95 6.7071.01 7.8971.39 0.703 0.315 0.006

Anteroventral nu 6.8770.90 10.6270.76*** 9.4170.94www 9.8671.73 o0.001

Anteromedial nu 6.6571.35 7.6970.70 7.0570.70 7.8371.41 0.726 0.478 0.022

Reticular nu 7.8271.49 8.3070.69 6.5771.05 7.7371.85 0.475 0.059 0.086

Paraventricular nu 7.6671.78 7.7571.04 6.6571.08 7.4571.78 0.483 0.202 0.387

Parafascicular nu 6.6370.72 7.8470.59 8.2671.14 8.1371.33 0.059 0.008 0.125

Subthalamic nu 6.3070.35 8.3570.93*** 8.8871.66www 9.0171.35 0.024

Hypothalamus

Supraoptic nu 5.8970.36 5.4871.36 6.1470.68 7.6771.98 0.037

Lateral 5.0270.49 5.8170.58 6.2170.77 7.0071.72 0.170 0.063 0.001

Anterior 5.3070.48 6.5270.95 6.1370.64 7.0571.78 0.704 0.085 0.009

Periventricular 4.3670.38 5.3270.87 5.1470.50 5.9071.38 0.759 0.036 0.009

Arcuate 5.6370.67 6.0971.07 6.2370.65 7.7571.72 0.342 0.019 0.041

Ventromedial 5.4970.67 6.1771.16 6.2870.66 7.4471.79 0.570 0.018 0.032

Posterior 6.4270.38 7.4870.37 6.4570.87 7.4371.38 0.891 0.989 0.002

Mammillary nucleus 7.3171.06 7.7771.28 6.7271.44 8.9871.86 0.078 0.531 0.010

Medial forebrain bundle 5.7070.68 6.3370.88 5.5770.74 6.9471.41 0.296 0.495 0.008

Mesencephalon

Interpeduncular nucleus 7.1171.11 10.9972.81** 11.3672.19www 12.0272.54 0.049

Substantia nigra

Pars reticulata 5.2870.39 7.2670.37*** 8.5571.69www 8.7771.14 0.020

Pars compacta 5.3370.36 7.4370.50*** 8.3371.11www 8.3270.87 o0.001

Pretectal area 5.9370.43 8.1770.77*** 6.6370.87 7.4071.01 0.012

Superior colliculus 6.0770.91 8.2270.62*** 7.1771.00w 7.6870.83 0.008

Deep layers 6.8770.69 8.3470.97*** 8.9171.06www 8.4371.28 0.010

Inferior colliculus 8.2971.81 12.1572.89*** 11.9771.41www 12.5072.34 0.037

Raphe median 5.1671.41 6.4670.78* 6.5970.61w 7.3371.07 0.031

Raphe dorsal 6.1470.70 7.3371.15 6.4470.59 6.9070.91 0.239 0.829 0.010

Pedunculopontine tegmental nu 4.8270.46 7.1770.41 4.6270.74 6.2770.99 0.152 0.029 o0.001

Rhombencephalon

Flocculus 6.7170.76 9.3970.88 8.1470.95 9.8172.36 0.311 0.071 o0.001

Cerebellar gray matter 6.2170.92 7.4970.83 6.5571.24 7.2470.93 0.420 0.895 0.010

Molecular layer cerebellar gray 7.5171.10 10.5172.95 8.3471.81 9.8671.67 0.325 0.903 0.005

Table 1 Continued

Control diet LiCl diet
LiCl diet�DOI interaction LiCl effect DOI effect
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Raphe magnus nu 4.8470.56 6.3570.44*** 5.7070.92w 6.0870.83 0.029

Raphe pallidus nu 4.2270.44 5.7570.65*** 5.6270.90ww 5.7870.58 0.005

Locus coeruleus 5.4170.51 7.7870.94*** 7.3170.66www 7.2470.50 o0.001

Cochlear nucleus 6.9971.56 10.3071.78*** 7.9770.94 9.0171.03* 0.025

Vestibular nu (medial) 6.9770.71 9.9871.24*** 9.3471.57www 10.0670.90 0.009

Spinal tract V nu 6.1271.24 7.0471.01 6.5570.99 7.4771.24 0.997 0.296 0.029

White matter

Corpus callosum 4.4670.51 5.7671.02 5.1570.81 6.0171.71 0.571 0.233 0.009

Zone incerta 5.4770.37 6.3671.01 5.1870.68 7.3371.52 0.079 0.342 o0.001

Internal capsule 4.2270.44 5.0170.74 4.8770.87 5.6070.99 0.924 0.032 0.009

Cerebellar white matter 3.7370.83 4.5671.06 4.5470.70 3.8771.57 0.073 0.887 0.855

Non-blood–brain barrier regions

Subfornical organ 5.6170.64 6.1770.69 5.1570.85 5.9571.00 0.034

Median eminence 5.6470.51 6.4971.88 6.4170.68 7.2671.76 0.994 0.120 0.084

Choroid plexus (third ventricle) 18.1871.44 22.8473.70 25.1574.13 23.9577.35 0.108 0.030 0.335

Abbreviations: nu, nucleus; lat, lateral; med, medial; 1k*¼ (ml/s/g)� 10�4. Each value is a mean7SD.
Main effects not calculated if statistically significant Diet�Drug interaction.
In cases of statistically significant Diet�Drug interaction unpaired t-tests were realized. *po0.05; **po0.01; ***po0.001; control diet-DOI vs control diet-saline; LiCl diet-DOI vs LiCl diet-saline. wpo0.05; wwpo0.01;
wwwpo0.001; LiCl diet-saline vs control diet-saline.
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vs saline injection) interaction with regard to k* for AA*
(Table 1). In 60 of the 70 regions, DOI compared with saline
had a significant positive main effect on k*, elevating k* to
the same extent in both the control diet- and LiCl-fed rats.
In 13 of the 70 regions, LiCl feeding compared with control
diet had a significant main effect on k*, elevating k* to the
same extent following saline or DOI injection. Of the 13
regions, layers IV and VI of the auditory cortex, and medial
habenular and parafascicular nucleus are considered to
participate in auditory or visual circuitry (Brodal, 1981;
Krout et al, 2001). Five of the 70 regions did not have a
significant main effect of either DOI or LiCl.

Significant Diet�Drug Interactions

In 24 of the 94 brain regions examined, the Diet�Drug
interaction was statistically significant. In 19 of the 24,
unpaired t-tests showed that LiCl feeding compared with
control diet elevated k* significantly (after saline adminis-
tration) Table 1). In 20 of the 24, unpaired t-tests also
showed that DOI increased k* significantly in the control
diet but not in the LiCl-fed rats, thus, that LiCl blocked the
DOI effect. Many of the 24 regions with statistically
significant interactions belong to primary central visual
and auditory neural systems (Brodal, 1981)Fauditory
cortex layer 1, medial geniculate nucleus, inferior colliculus,
cochlear and vestibular nuclei, visual cortex layers I, IV, and
VI, superior colliculus (superficial and deep layers), and
lateral geniculate nucleus. Others of the 24Fthalamic
anteroventral nucleus (Rolls et al, 1977), the subthalamic
nucleus (Matsumura et al, 1992), and pretectal area (Clarke
et al, 2003)Falso participate in visual-oculomotor-auditory
circuitry. LiCl-affected regions also were the substantia
nigra and locus coeruleus.

DISCUSSION

In contrast to the reported widespread potentiation induced
by LiCl feeding of regional k* responses to the cholinergic
muscarinic receptor agonist, arecoline (Basselin et al,
2003b), the present study shows that LiCl feeding did not
potentiate the k* response to the 5-HT2A/2C receptor
agonist, DOI, in any of 94 brain regions examined
(Table 1). In 70 of the 94 regions, the Diet�Drug
interaction was statistically insignificant and LiCl feeding
neither potentiated nor depressed the k* response to DOI.
Indeed, the k* response was positive and significant in 60 of
the 70 regions (positive significant main effect of DOI).
The regions in which DOI increased k* in control diet rats

(Table 1) are known to have high densities of 5-HT2A/2C

receptors, particularly 5-HT2A receptors (Sharma et al,
1997; Xu et al, 2000). DOI at 1.0mg/kg increased k* by 39%
in the positively affected regions, compared with 60%
reported after 2.5mg/kg i.p. DOI. This difference is
consistent with a dose effect. The increments in k* caused
by 2.5mg/kg DOI could be blocked by preadministration of
the 5-HT2A/2C antagonist, mianserin, further supporting a
5-HT2A/2C-mediated activation of PLA2 (Qu et al, 2003).
Diet�Drug interactions were statistically significant in

24 of the 94 regions examined, many of which belong to
central visual and auditory circuits (see Results). In 19 of

the 24 regions, LiCl compared with control diet increased k*
significantly in the saline-injected rats, as reported pre-
viously (Basselin et al, 2003b). In 20 of the 24 regions, DOI
compared with saline increased k* significantly in control
diet but not in LiCl-fed rats, showing that lithium blocked
these DOI responses.
The LiCl-induced elevations in k* for AA in central visual

and auditory areas may reflect potentiation in these areas of
their normal high activity (Mazziotta et al, 1982; Phelps et al,
1981; Sokoloff et al, 1977), which depends on serotonergic,
cholinergic, and glutamatergic neurotransmission (Chal-
mers and McCulloch, 1991; Dringenberg et al, 2003; Ingham
et al, 1998). They also may reflect lithium’s stimulation of
retinal and cochlear inputs to these areas (Jung and Reme,
1994; Pfeilschifter et al, 1988).
Chronic lithium is reported to increase the 5-HT

concentration in the serotonergic synaptic cleft by reducing
5-HT1 density, particularly the density of presynaptic
5-HT1B receptors, but it does not appear to affect 5-HT2A/

2C receptor density (Friedman and Wang, 1988; Goodwin,
1989; Haddjeri et al, 2000; Januel et al, 2002; Massot et al,
1999; Mizuta and Segawa, 1988; Redrobe and Bourin, 1999).
As 5-HT1B receptors depress presynaptic 5-HT release,
lithium’s elevation of k* for AA in auditory and visual areas
may result from derepressed 5-HT release, elevated 5-HT in
the cleft, or an increased 5-HT2A/2C-mediated activation of
PLA2 (Januel et al, 2002; Redrobe and Bourin, 1999). A
similar effect can occur in the substantia nigra and locus
coeruleus, where 5-HT2A and 5-HT1B receptors are found
(Aghajanian and Marek, 1999; Olijslagers et al, 2004;
Sijbesma et al, 1991). On the other hand, lithium is reported
not to change whole brain 5-HT turnover (Karoum et al,
1997), 5-HT release (Mork, 1998; Sharp et al, 1991), DOI-
induced adrenocorticotropic hormone (ACTH) release
(Gartside et al, 1992), or DOI-evoked wet-dog shakes in
ACTH-treated rats (Kitamura et al, 2002). Our finding that
LiCl feeding did not change head-turning frequency in
response to DOI may be related to these negative effects, or
to lithium’s lack of effect on DOI-induced elevations of k* in
60 of the 94 brain regions examined (Table 1).
The LiCl-induced elevations in k* for AA in visual and

auditory areas of the rat brain may correspond to lithium’s
ability to potentiate the P1/N1 components of auditory
evoked responses and the 65-P95 and P95-N125 compo-
nents of visual evoked responses in humans (Fenwick and
Robertson, 1983; Hegerl et al, 1990; Ulrich et al, 1990).
These evoked responses are thought to depend on
serotonergic transmission (Chalmers and McCulloch,
1991; Dringenberg et al, 2003; Hegerl et al, 2001; O’Neill
et al, 2003). The elevations also may be related to the ability
of toxic doses of lithium to cause auditory or visual
hallucinations (Hambrecht and Kaumeier, 1993) or photo-
phobia (Pridmore et al, 1996). On the other hand, lithium’s
blocking of the k* increments in response to DOI, a
recognized hallucinogen (Sadzot et al, 1989), in visual and
auditory areas and the substantia nigra and locus coeruleus,
may relate to its ability to reduce hallucinations in bipolar
disorder (Goodnick and Meltzer, 1984; Potash et al, 2001;
Rosenthal et al, 1979).
Lithium’s potentiation of arecoline-induced increments in

k* for AA (Basselin et al, 2003b), but not of DOI-induced
increments (Table 1), may relate to its ability to rectify
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neurotransmission imbalance in bipolar disorder. These are
proposed to consist of reduced cholinergic and elevated
dopaminergic transmission, and disturbed serotonergic and
NMDA transmission (see Introduction) (Bymaster and
Felder, 2002; Janowsky and Overstreet, 1995; Mahmood
and Silverstone, 2001). In support of this possibility is our
abstract that LiCl feeding blocked elevations in k* for AA in
rats administered quinpirole, a dopaminergic D2 receptor
agonist (Basselin et al, 2003a).
Lithium’s potentiation of arecoline-induced elevations in

k* in rats is consistent with its proconvulsant action with
regard to cholinomimetics (Basselin et al, 2003b; Evans et al,
1990; Jope, 1993; Lerer, 1985; Morrisett et al, 1987). An
increased availability of unesterified AA and some of its
eicosanoid products could promote neuronal excitability,
glutamatergic neurotransmission, and seizure propagation
(Bazán, 1989; Kelley et al, 1999; Kolko et al, 1996; Kunz and
Oliw, 2001; Li et al, 1997; Lysz et al, 1987; Strauss and
Marini, 2002; Wallenstein and Mauss, 1984). In contrast to
its effect on PLA2 signaling via AA, LiCl feeding is reported
to reduce brain phospholipase C activation by cholinomi-
metics (Casebolt and Jope, 1989; Ormandy et al, 1991; Song
and Jope, 1992).
The lack of potentiation by lithium of the DOI-induced

elevations in k* is consistent with lithium not being a
proconvulsant for serotonergic drugs, at least with regard to
AA signaling (Shimizu and Wolfe, 1990). Although LiCl
feeding is reported to augment ‘convulsion-like’ EEG
changes following 8mg/kg i.p. DOI (Moorman and Leslie,
1998; Williams and Jope, 1994; Williams and Jope, 1995),
this effect cannot be ascribed to 5-HT2A/2C receptor
activation, as 8mg/kg DOI also stimulates cholinergic
(Obata et al, 2003; Ramirez et al, 1997), glutamatergic
(Scruggs et al, 2000), dopaminergic (Kuroki et al, 2003) and
GABAergic receptors (Abi-Saab et al, 1999). That lithium
also does not modify convulsant thresholds to NMDA,
kainic acid, bicuculline, or pentylenetetrazole further argues
for a selective cholinergic proconvulsant effect (Ormandy
et al, 1991).
LiCl’s potentiation of k* responses to arecoline but not to

DOI suggests that lithium can modulate receptor-initiated
PLA2-signaling depending on the receptor, the PLA2

enzyme, or the G-protein that couples the receptor to
PLA2 (Axelrod, 1995; Chen et al, 1999; Cooper et al, 1996).
Three major PLA2 enzymes occur in brainFa Ca2þ -
dependent cytosolic cPLA2 selective for AA, a Ca2þ -
dependent secretory sPLA2, and a Ca2þ -independent iPLA2

selective for docosahexaenoic acid (22:6 n-3), another
polyunsaturated fatty acid found usually at the sn-2 position
of phospholipids (Clark et al, 1995; Dennis, 1994; Murakami
et al, 1999; Strokin et al, 2003). Although we do not know
which PLA2 enzymes mediate the k* responses to arecoline
and DOI, LiCl feeding to rats is reported to downregulate
brain mRNA and activity levels of cPLA2 but not of
sPLA2 or iPLA2 (Bosetti et al, 2001; Rintala et al, 1999;
Weerasinghe et al, 2004).
It is unlikely that lithium’s different effects on the k*

responses to arecoline and DOI are due to its modulating G
proteins coupled to M1,3,5 or 5-HT2A/2C receptors. The Gaq
subunit of the G proteins that couple these to phospholipase
C or PLA2 (Chen et al, 1999; Cooper et al, 1996; Roth et al,
1998; Sidhu and Niznik, 2000) is not markedly affected by

LiCl feeding (Dwivedi and Pandey, 1997) or by exposing rat
brain cortical membranes to chronic lithium (Wang and
Friedman, 1999).
In contrast to the ability of 1.0 and 2.5mg/kg i.p. DOI to

increase k* for AA (Table 1 and Qu et al, 2003), DOI at 2.5
and 50mg/kg i.p. in unanesthetized rats decreases regional
cerebral metabolic rates for glucose, rCMRglc, measured
with 2-deoxy-D-glucose (Freo et al, 1991). These latter
decreases correspond to reduced firing rates of serotonergic
neurons (Ashby et al, 1990; Bloom, 1985). The opposing
effects of DOI on k* compared with rCMRglc illustrate that
the fatty acid and 2-deoxy-D-glucose methods image
different aspects of brain functional activity. The former
images PLA2-mediated signal transduction via AA in cell
bodies or dendrites, whereas the latter reflects the energy-
consuming firing of axonal terminals of these cell bodies
(Qu et al, 2003; Rapoport, 2003; Sokoloff, 1999).
In summary, (i) 5-HT2A/2C-mediated PLA2 signaling via

AA can be imaged as regional brain increments in k* for AA
in response to 1mg/kg i.p. DOI in unanesthetized rats; (ii)
LiCl feeding does not potentiate k* responses to DOI in any
brain region, but blocks the responses in certain visual and
auditory areas, the substantia nigra, and locus coeruleus;
(iii) LiCl feeding does not affect baseline values of k* in
most brain regions, but increases baseline k* in visual or
auditory regions; (iv) LiCl feeding does not significantly
alter head turning frequency in response to DOI.
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