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The local anesthetic procaine, when administered to humans intravenously (i.v.), yields brief intense emotional and sensory experiences,

and concomitant increases in anterior paralimbic cerebral blood flow, as measured by positron emission tomography (PET). Procaine’s

high muscarinic affinity, together with the distribution of muscarinic receptors that overlaps with brain regions activated by procaine,

suggests a muscarinic contribution to procaine’s emotional and sensory effects. This study evaluates the effects of procaine on cerebral

muscarinic cholinergic receptors in the anesthetized rhesus monkey. Whole brain and regional muscarinic receptor binding was

measured before and after procaine administration on the same day in three anesthetized rhesus monkeys with PET and the radiotracer

3-(3-(3[18F]fluoropropylthio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine ([18F]FP-TZTP), a cholinergic ligand that has

preferential binding to muscarinic (M2) receptors. On separate days each animal received six different doses of i.v. procaine in a

randomized fashion. Procaine blocked up to B90% of [18F]FP-TZTP specific binding globally in a dose-related manner. There were no

regional differences in procaine’s inhibitory concentration for 50% blockade (IC50) for [
18F]FP-TZTP. Tracer delivery, which was highly

correlated to cerebral blood flow in previous monkey studies, was significantly increased at all doses of procaine with the greatest

increases occurring near procaine’s IC50 for average cortex. Furthermore, anterior limbic regions showed greater increases in tracer

delivery than nonlimbic regions. Procaine has high affinity to muscarinic M2 receptors in vivo in the rhesus monkey. This, as well as a

preferential increase of tracer delivery to paralimbic regions, suggests that action at these receptors could contribute to i.v. procaine’s

emotional and sensory effects in man. These findings are consistent with other evidence of cholinergic modulation of mood and emotion.
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INTRODUCTION

The local anesthetic procaine has unique neuropsychophar-
macological properties that make it useful as a discrete
probe of the limbic system and associated studies of
emotion. In this regard, it has been used as an affective
challenge in healthy volunteers (Ketter et al, 1996; Servan-
Schreiber et al, 1998), and patients with mood disorders
(Ketter et al, 1993) and panic disorder (George et al, 1993),

as well as in individuals abusing alcohol (George et al, 1990)
and cocaine (Adinoff et al, 2001).

Procaine (1.84 mg/kg), when administered intravenously
(i.v.) in healthy volunteers (Kellner et al, 1987), results in
brief intense emotional (ranging from euphoria to dyspho-
ria) and sensory experiences (visual, auditory, and olfactory
illusions/hallucinations) in association with increased
relative anterior paralimbic cerebral blood flow (CBF)
as measured with [15O] water positron emission tomo-
graphy (PET) (Ketter et al, 1996). In healthy individuals,
procaine also induces the following: hormonal changes such
as increased adrenocorticotropic hormone (ACTH), corti-
sol, and prolactin (Kling et al, 1994); and increased
temporal lobe fast activity electroencephalogram (EEG)
(Parekh et al, 1995). Furthermore, the right amygdala blood
flow correlated with the degree of affective arousal, while
the left amygdala CBF correlated positively with the degree
of dysphoria and negatively with the degree of euphoria
(Ketter et al, 1996). The experiences described by the
subjects in these procaine studies are reminiscent of those
reported after direct stimulation of limbic cortex during
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epilepsy surgery (Gloor et al, 1982; Halgren et al, 1978;
Penfield and Jasper, 1954). The emotional and endocrine
changes also resemble the effects of acute challenge with the
anticholinesterase drug physostigmine (Janowsky et al, 1986).

The neurochemical mechanisms of procaine’s emotional,
sensory, and endocrine effects could provide valuable
insights into the neurobiology of normal and pathological
emotion regulation, but have not been clearly elucidated.
Procaine is classically associated with the blockade of
voltage-gated sodium channels producing the local anes-
thetic effect for which it was designed and synthesized by
Einhorn in 1905. Procaine produces 50% inhibition of the
action potential at 1.1 mM in frog and rat sciatic nerve
(Butterworth and Strichartz, 1990), by binding in the
channel pore and altering the gating mechanism to increase
the probability of the inactive state, thereby reducing the
likelihood of an action potential (Butterworth and Stri-
chartz, 1990). Site-directed mutations in rat brain sodium
channels show reduced use-dependent blockade, confirm-
ing this hypothesis (Scholz, 2002). Procaine is also
hypothesized to have direct effects on the lipid bilayer
and hence indirectly influence components in the neuronal
membrane (De Jong, 1994).

Procaine also interacts with many neurochemical sys-
tems, but is most potent at the muscarinic cholinergic
receptor. Procaine competitively displaces quinuclidinyl
benzilate (QNB), a nonspecific muscarinic antagonist at
putative M2 receptors in the guinea-pig ileum with a
delivery rate constant (Ki) of 4 mM (Hisayama et al, 1989)
and inhibits QNB binding (Ki¼ 4 mM) in rat hippocampal
membranes known to have M1 and M2 receptors (Sharkey
et al, 1988). In contrast, the affinity of procaine for M3

receptor was 5 mM in the guinea-pig mesenteric artery (Itoh
et al, 1981). Procaine inhibits methylcarbachol or dimethyl-
phenylpipereeinium (DMPP) binding presumably at nico-
tinic cholinergic receptors on rat brain membranes at
higher concentrations (Ki¼ 50–100mM depending on the
agonist used) than observed in the muscarinic system
(Saraswati et al, 1992). Sigma receptors are the only other
sites at which procaine binds in the low micromolar range
(3.6 mM; Sharkey et al, 1988).

The affinity of procaine for other systems include
transporters (dopamine (DA): 104 mM, norepinephrine
(NE): 217 mM, and serotonin (5HT): 276 mM) and receptors
(serotonin (0.1–10 mM, depending on subtype), neuropep-
tide Y (5 mM), angiotensin (5 mM), endothelin (5 mM),
adrenergic (a2: 5 mM, b1: 100 mM), glycine (1 mM),
glutamate (1 mM), and gamma-aminobutyric acid (GABA)
(1.5–5.4 mM per subunit); Aoshima et al, 1992; Cunning-
ham and Lakoski, 1988; Fishlock and Parks, 1966; Itoh et al,
1981; Napier, 1992; Ritz et al, 1987; Sharkey et al, 1988;
Sugimoto et al, 2000; Sato et al, 2000). It should be noted
that for some ligands affinity constants were not deter-
mined, but stated doses had no biological effects, such as D1

and D2 receptors (Napier, 1992). Thus, based on affinities,
procaine would be expected to have primary actions on the
muscarinic cholinergic and sigma receptor systems that
could be important contributors to its clinical effects.

Cholinergic M1 and M2 receptors are present in core
limbic areas, such as amygdala and hippocampus, as well as
primary sensory regions. While M1 receptors have primarily
a cortical distribution, M2 receptors have a more uniform

distribution across the brain, cortically and subcortically
(Mesulam, 1995; Mesulam et al, 1983; Flynn and Mash,
1993). Telencephalic cholinergic projections originating in
the basal forebrain nuclei, such as the nucleus basalis, send
efferents to most of the cortex, including the anterior
cingulate, as well as to subcortical regions, the basolateral
amygdala, and hippocampus (Mesulam, 1995; Mesulam et al,
1983). Of particular interest are the efferents of the
basolateral amygdala that heavily innervate the anterior
cingulate and nearby medial orbitfrontal cortex (Russchen
et al, 1985). These anterior paralimbic regions with direct
and indirect cholinergic connections are also the areas that
exhibit the most robust activation by procaine in humans
(Ketter et al, 1996). Thus, the distribution and the potential
functional consequences of the cholinergic receptors in
limbic pathways could allow cholinergic mechanisms to
play an important role in emotion (Heimer, 2003).

Cholinergic drugs have been shown to influence limbic
regions known to mediate mood, reward, and aggression.
For example, neuronal activity in the dorsolateral prefrontal
and orbitofrontal cortex, and the amygdala of monkeys has
been shown to be altered by iontophoretic administration of
cholinergic agents (Aou et al, 1983; Inoue et al, 1983; Lenard
et al, 1989). Similar to GABA, procaine microinjection
(6–20 mg) into rat nucleus basalis inhibits frontal cortical
neuronal firing in response to conditioned stimuli (pairing
with medial forebrain stimulation) (Rigdon and Pirch,
1984). Moreover, procaine selectively activates limbic
structures electrophysiologically in rats (Munson et al,
1970; Racine et al, 1975, 1979; Wagman et al, 1967).
Utilizing 2-deoxyglucose methodology, lidocaine, a closely
related amide local anesthetic, selectively activated limbic
structures in rats (Post et al, 1984). Local anesthetics,
including cocaine, lidocaine and procaine, can produce
kindled seizures and aggressive behavior in rodents (Post,
1981). Intra-amygdalar injection of cholinomimetics also
induces kindled seizures (similar in appearance to those
evoked by electrical amygdaloid kindling), which can be
blocked by muscarinic antagonists (Cain, 1981). Further-
more, atropine, a muscarinic antagonist, inhibits and
physostigmine weakly facilitates procaine-induced kindling
in rats (Heynen et al, 1995).

In summary, cholinergic modulation could contribute
significantly to procaine-induced emotional and sensory
experiences. This is suggested by procaine’s: (1) preferential
affinity to M2 muscarinic cholinergic receptors that are
localized in key limbic areas; (2) ability to selectively
activate limbic structures associated with emotion regula-
tion while producing concomitant clinical electrophysiolo-
gical effects; and (3) similarities in action to muscarinic
agonists. In this study, we specifically explore the potential
role of the muscarinic system in procaine’s effects by
measuring muscarinic receptor binding in anesthetized
rhesus monkeys with the PET radioligand [18F]FP-TZTP,
3-(3-(3[18F]fluoropropylthio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-
tetrahydro-1-methylpyridine (Kiesewetter et al, 1995) be-
fore and after procaine administration.

We hypothesized that the binding of [18F]FP-TZTP
would be reduced by procaine as a function of the dose
administered. In addition, we hypothesized that the K1 of
the ligand, which correlates strongly with CBF (Carson et al,
1998), would have a pattern of specific limbic increases
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similar to those observed with CBF in human studies
(Ketter et al, 1996), although this effect could be attenuated
by anesthesia.

METHODS

Subjects

Four adult male rhesus monkeys (Macaca mulatta) weigh-
ing 11.7, 8.8, 8.0, and 7.1 kg were studied with brain imaging
techniques while receiving general anesthesia during the
entire procedure. One animal was unable to complete the
whole series of studies due to arterial port failure, and thus
was not included in the analysis. All studies were performed
under a protocol approved by the NIH Clinical Center
Animal Care and Use Committee. The monkeys were
routinely monitored by veterinary staff, housed according
to American Association for Laboratory Animal Care
(AALAC) standards in individual cages, allowed ample feed
and were provided with psychological enrichment.

Experimental Design

Animals underwent PET with the radiopharmaceutical 3-(3-
(3[18F]fluoropropyl)thio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetra-
hydro-1-methylpyridine ([18F]FP-TZTP) while anesthe-
tized with isoflurane. A total of 18 experiments, six with
each animal, were conducted on separate days with each
experiment separated by 20–180 days. On each study day,
two dynamic PET scan sessions were collected, including an
initial baseline scanning session with saline administration
followed by a second with continuous infusion of procaine,
at one of six doses, ranging from zero, 0.015625, 0.03125,
0.0625, 0.125, to 0.5 mg/kg/min (active drug doses referred
to as dose 1 to dose 5, respectively). The order of procaine
doses was randomized. These doses were chosen based on
self-administration studies (Ford and Balster, 1976; Ham-
merbeck and Mitchell, 1978), while being safely under the
seizure-inducing levels (Babb et al, 1979). These infusion
rates were determined from procaine infusion rates from
self-administration studies of 1 mg/kg per injection at an
average rate of 24 injections per hour (Ford and Balster,
1976) and 4 mg/kg per injection at an average rate of nine
injections per hour (Hammerbeck and Mitchell, 1978).

Radiopharmaceutical

[18F]FP-TZTP (Kiesewetter et al, 1995, 1999) was developed
as an extension of the structural class of M2 agonists made
available by Nova Nordisk (Sauerberg et al, 1992). FP-TZTP
exhibits modest selectivity for M2 (2.2 nM) over M1 (7 nM)
receptors. Studies of crossreactivity with other neurotrans-
mitter systems showed low affinity for all biogenic amine
systems evaluated. FP-TZTP exhibited affinity for sigma-1
(62 nM) and 5HT1 receptor (2 mM) (Kiesewetter et al, 1995).
The uniform uptake of [18F]FP-TZTP across the brain
resembles the distribution of M2 receptors, which is
consistent with M2 selective binding. In rats, [18F]FP-TZTP
displays high uptake and high specific binding as deter-
mined by ex vivo autoradiography (Kiesewetter et al, 1999).
In muscarinic knockout mice, the M2 knockout mouse is the
only one that shows significantly reduced [18F]FP-TZTP

uptake in all brain tissues regions (Jagoda et al, 2003).
Taken together, these data support [18F]FP-TZTP prefer-
ential M2 binding in vivo. Tracer kinetic modeling for
[18F]FP-TZTP has been developed by Carson et al (1998), so
that PET data can be converted into parametric images of
total binding (V, volume of distribution) and radioligand
delivery (K1). The binding of [18F]FP-TZTP has been shown
to be decreased by administration of physostigmine, and
thus the binding was sensitive to endogenous acetylcholine
(Carson et al, 1998). While other potential ligands, such as
the nonselective muscarinic agonist CI-979 (Hartvig et al,
1997) or nonselective muscarinic antagonist [11C]-scopola-
mine (Frey et al, 1992), and [11C]NMPB (Zubieta et al, 2001)
could contribute additional information pertaining to the
profile of in vivo actions of potential agents on muscarinic
receptors, [18F]FP-TZTP was chosen over others due to its
preferential binding to M2 receptors. Furthermore, the
study design was conducive to using an 18F compound,
particularly because a single synthesis generated the total
radiotracer required for both phases of each study day.

Procedure

On the morning of the each procedure, the fasted animal
was initially given 0.5 mg ketamine and 5 cc of 2.5% sodium
pentathol intramuscularly to produce quasianesthesia for
the placement of three i.v. lines, usually in both radial veins
and a femoral vein, and intubation for eventual general
anesthesia. The animal was transported to the PET suite and
placed in the PET scanner and general anesthesia was
induced with inhalation of 1–2% isoflurane using a Stevens–
Johnson anesthesia machine.

The head was positioned in a stereotactic headholder for
coronal image acquisition. An arterial line was attached to a
permanent subcutaneous arterial port (Model 21-Y036,
Sims Deltec, St Paul, MN) implanted in the femoral artery,
a temperature probe was inserted into the rectum, and
cardiopulmonary monitoring equipment leads were placed
on the animal to monitor their cardiovascular, pulmonary,
and thermoregulatory functions throughout the entire
procedure (electrocardiogram (EKG), blood pressure, re-
spiration rate, end-tidal pCO2, and temperature). Once
cardiopulmonary measures were stable under anesthesia,
the experimental procedures began.

After a transmission scan, two [18F]FP-TZTP dynamic
scan sessions were acquired. First, a series of dynamic scans
were collected over 180 min with saline infusion. After the
primary data collection period of 90 min, procaine admin-
istration began and continued for the remainder of the
experimental procedure. Sterile 10% procaine hydrochloride
solution (Sanofi Winthrop Pharmaceuticals) was diluted
with saline to desired concentrations on each experimental
day and kept in the dark until experiments began, as
procaine is light sensitive.

Procaine was administered i.v. in a continuous fashion
with a Harvard pump. The syringe and i.v. lines were
wrapped with aluminum foil to limit light exposure. The
procaine dosing strategy involved a two-step infusion rate; a
loading dose, which was double the target dose, was
administered for 40 min and was followed by the target or
maintenance dose for the remainder of the scanning session.
At 40 min after beginning the target dose, the second set of
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dynamic scans was acquired over 90 min, while the constant
procaine infusion continued (mean interval between scans
18572 min). Upon completion of the experiment, the intra-
venous and arterial lines and monitoring equipment were
removed, the animal was taken out of the PET scanner, returned
to its home cage and allowed to recover from anesthesia.

[18F]FP-TZTP was synthesized for each study day
according to previously published methods (Kiesewetter
et al, 1995, 1999). The product from a single radiosynthesis
was split for two injections. The mean activity injected was
1.070.1 mCi for the first injection (saline scan) and
3.571.6 mCi for the second injection (procaine scan); mean
[18F]FP-TZTP mass was 0.470.2 nmol for the first injection
and 4.572.1 nmol for the second injection; mean specific
activity injected was 270071000 mCi/mmol for the first
injection and 8407310 mCi/mmol for the second injection.
More radioactivity was given for the second injection to
attenuate the effect of the residual radioactivity from the
first injection.

Arterial blood samples were drawn from the indwelling
arterial port throughout the scanning procedure. A total of
29 blood samples (0.5 ml) taken over the scanning period
were centrifuged and 0.1 ml plasma aliquots were counted
in a calibrated gamma counter to generate time activity
curves. Seven 1 ml blood samples were obtained at
0,3,8,15,30,50 and 90 min after injection for determination
of the unmetabolized radiotracer fractions by thin layer
chromatography (TLC) according to methods previously
described (Carson et al, 1998).

Procaine levels were determined from three 2 ml blood
samples taken at 0, 15, and 45 min after the second injection
of the radiotracer (40, 55, and 85 min after maintenance dose
was initiated); two drops of sodium arsenite per milliliter
blood were added immediately to inhibit procaine metabo-
lism by butyrylcholinesterases in blood. The samples were
assayed for procaine levels by gas chromatography measur-
ing the free procaine level in plasma (National Medical
Services, Inc., Willow Grove, PA). Steady-state plasma
concentrations were achieved through the loading/main-
tenance dose strategy, with procaine concentrations having a
coefficient of variation of 9%. No trends were observed over
time among the three procaine samples. The mean plasma
concentrations achieved are presented in Table 1.

Imaging Data Collection and Analysis

Image collection and analysis followed the methods of
Carson et al (1998). Images were acquired with the General
Electric Advance tomograph (DeGrado et al, 1994) in three-
dimensional mode, which collects 35 slices simultaneously
with a 4.25 interslice distance and a 6 mm isotropic
reconstructed resolution. Reconstructed scans were cor-
rected for attenuation, scatter, random emissions, and
deadtime, and calibrated in nCi/ml.

[18F]FP-TZTP functional images of delivery rate from the
plasma (K1 (ml plasma/min/ml tissue)) and equilibrium
volume of distribution (V (ml plasma/ml tissue)) or total
binding were computed from the dynamic scans collected
over the initial 45 min, utilizing a kinetic model with an
arterial input function that has been corrected for meta-
bolites (Carson et al, 1998). Initially, the time delay between
brain and blood sampling (Dt) was determined by a one-
compartment model fitting three parameters (Dt, V, K1).
Functional images of V and K1 were created by first gene-
rating a pixel by pixel time activity curve adjusting for the
global Dt, and then fitting to a two-parameter (K1 and V)
model.

For the second injection, the data were adjusted for
residual radioactivity and residual metabolites remaining
from the first injection (baseline scanning). Images were
corrected for residual activity and metabolites from the first
injection with identical methodology as that of Carson et al
(1998). Briefly, the model equation for the second injection
was modified to include a nonzero initial radioactivity
concentration (C0), which clears exponentially (exp(�k2t)),
where k2 is the clearance rate constant of the second
injection. For each pixel, C0 was estimated by averaging the
pixel value for the 30 min preceding the second injection
(corrected for decay). This extrapolated background radio-
activity amounted to less than 10% of total activity for the
second injection. The magnitude of metabolites remaining
from the first injection was estimated in a similar manner,
and affected the early portion of the input function for the
second injection.

Regions of interest (ROIs) were defined on coronal
magnetic resonance imaging scans (MRIs) using the rhesus
monkey atlas of Paxinos et al (2000). T1 weighted images

Table 1 The Effects of Procaine Administration on the Functional Response of the Cortex

Procaine [18F]FP-TZTP Specific binding Tracer delivery

BP (ml/ml) K1 (ml/min/ml)

Dose (mg/kg/min) Plasma level (lM) Baseline Procaine % Decrease Baseline Procaine % Increase

0.000 0.00 20.773.5 22.473.9 �8.5 0.4270.09 0.4570.13 5.7

0.016 0.65 20.976.2 13.272.5 35.1 0.4070.17 0.6270.31 51.7

0.031 1.19 16.971.8 10.370.8 39.1 0.4870.09 0.6270.13 31.5

0.063 2.92 16.374.5 7.772.1 52.5 0.3870.11 0.4870.20 22.6

0.250 12.24 12.670.6 2.770.8 78.1 0.3670.04 0.4370.10 17.9

0.500 21.37 20.179.7 2.371.0 88.6 0.3670.05 0.4270.02 19.5

Procaine administration exhibited first-order kinetics in the plasma and blocked cerebral [18F]FP-TZTP specific binding in a dose-related manner. The delivery rate of
the ligand (K1) increased maximally at 0.016mg/kg/min procaine. Average cortical values for BP and K1 are the mean across the three animals at baseline and with
procaine administration; percent decreases in BP are measures of blockade (ie baseline minus procaine values) and K1 increases are procaine minus baseline values.
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were acquired on a GE Signa (1.5 Tesla), with a sequence 3D
SPGR (X¼ 1 mm, Y¼ 1 mm, Z¼ 0.39 mm), while sedated
with ketamine and robinol on a separate day from the PET
studies. The V and K1 images were coregistered to the
structural MRIs using the Automated Image Registration
(AIR) algorithm (Woods et al, 1998) that transformed and
resliced the functional images into the coordinate system of
the MRIs. Primary ROIs were anterior cingulate, amygdala,
and basal forebrain structures ventral striatal and pallidal
nuclei that were particularly activated in the human blood
flow studies. Additional ROIs were defined in prefrontal,
parietal, occipital, temporal cortices, thalamus, striatum,
posterior cingulate, hippocampus, cerebellum, and brain-
stem. Primary sensory (V1, A1 and S1) and motor cortex
(M1) were also measured, but not included into statistical
inference testing as they were encompassed in some of the
previously mentioned regions. The mean V and K1 levels
were calculated from baseline and procaine scans for each
ROI and a cortical average (prefrontal, anterior cingulate,
posterior cingulate, parietal, occipital, and temporal cor-
tices) was obtained.

The V values measured at baseline (Vbase) and with
procaine (Vproc) administration were corrected for non-
specific binding by subtracting a uniform value of 7 ml/ml
(rationale explained below) taken from preblocking studies
with [18F]FP-TZTP (Carson et al, 1998), yielding binding
potential (BP) values for each scan (BP1¼Vbase�7;
BP2¼Vproc�7). Percent blockade was calculated by

DBP ¼ 100ððBP1 � BP2Þ=BP1Þ
The relationship of average cortical blockade (DBP) to

procaine dose was evaluated with repeated measure
ANOVA with procaine dose as the one within factor,
(SuperAnova, v1.11, Abacus Concepts, Berkeley, CA).

IC50 (inhibitory concentration for 50% blockade) values
were calculated by two methods using Graphpad Prism
software (v3.0a for Macintosh, Graphpad Software, Inc., San
Diego, CA), and were compared for best fit. The first
method determined IC50 from the percent blockade
measures (DBP) with the two-parameter model equation:

DBP ¼ DBPmax½L�=ðIC50 þ ½L�Þ
where DBPmax is the maximum percent blockade achievable
with procaine. Ligand concentrations [L] were based on
mean procaine plasma levels acquired during each scanning
period. The second fitting method used a sigmoidal dose-
response model fitting three parameters to the equation

DBP2 ¼ BPmaxð1 � ðDBPmax=100Þ½L�=ðIC50 þ ½L�ÞÞ
where BPmax is the binding potential in the absence of
procaine. These models differ in that the three-parameter
model only used data from the second scan of each day and
assumed a fixed value for BPmax on all days for all animals.
The two-parameter model used the baseline results (BP1)
measured for each animal on each experimental day to
directly calculate DBP. The three-parameter model also
included the second-scan information on the zero-dose
experimental day. Regional variations of IC50 values were
assessed with repeated measure ANOVA with two within
factors, region and procaine dose.

The statistical inferential methods for K1 values were
essentially identical to those described to assess BP

measures. K1 ROI values (without any corrections) mea-
sured at baseline (K1-base) and with procaine (K1-proc)
administration were used to calculate percent change by

DK1 ¼ 100ððK1�proc � K1�baseÞ=K1�baseÞ
The relationship of average cortical change of K1 to

procaine dose was evaluated with repeated measure
ANOVA with one within factor, procaine dose. Regional
variations of K1 change were assessed with repeated
measure ANOVA with two within factors, region and dose.
When appropriate post hoc means comparisons were
conducted, as in the case of testing the a priori hypothesis
of selective anterior paralimbic, K1 increases. Variability of
peripheral measures was also examined with repeated
measures ANOVA, with two within factors of dose and times.

Owing to the relative uniformity of muscarinic M2

receptor distribution across the brain, nonspecific binding
measures were estimated in the following way. Since
individual values were not available, a constant value for
the nonspecific distribution of volume was used. Several
constants were evaluated (6, 7, 8, and 8.7 ml/ml (the mean
cortex value reported in Carson et al (1998) from
preblocking studies)), but the IC50 estimates, regardless of
constant value, remained essentially identical. For example,
for the mean cortex IC50, a value of 1.34 mM was obtained
when using a constant value of 8.7 ml/ml, as compared to
1.31 mM obtained with 7 ml/ml for nonspecific distribution
volume estimates. The constant value of 7 ml/ml, approxi-
mately the mean value of the cerebellum from preblocking
studies was chosen for the analyses, under the assumption
that nonspecific binding is uniform across the brain. Note
that the underestimation of nonspecific binding in this
study would have the effect of underestimating the
maximum percent blockade. Again using the cortex average
as an example region, the DBPmax using 8.7 ml/ml was
100.1%, while 7 ml/ml produced a value of 88.4%.

RESULTS

Control Values

On one day, each animal received saline administration
during the second scanning period, in lieu of procaine, to
establish test–retest reliability. Cortical [18F]FP-TZTP BP
did not differ significantly on retest (mean7SD saline1,
21.472.9 ml/ml; saline2, 23.173.4; F¼ 1.48, df¼ 1,2,
p¼ ns). However, there was a slight tendency for regional
[18F]FP-TZTP BP changes from saline1 to saline2, as
indicated by a region� scan interaction (F¼ 2.28,
df¼ 12,24, p¼ 0.04). Most regions increased slightly 1.0–
2.4 ml/ml (average change 5.9%), but the thalamus,
cerebellum, and the brainstem remained at the same level
(o0.8 ml/ml change). This slight trend of BP with time on
anesthesia was also seen in the work of Carson et al (1998)
and will tend to result in an underestimation of DBP.

Cortical values for DK1 also showed a slight, but
nonsignificant increase (5.7%) from saline1 to saline2,
a nonsignificant increase (mean7SD saline1, 0.4270.09;
saline2, 0.4570.13; F¼ 0.53, df¼ 1,2, p¼ ns). Again there
was significant regional variation (F¼ 2.32, df¼ 12,24,
p¼ 0.04) from saline1 to saline 2. Most regions increased
0.02–0.133 ml/min/ml (average change 11.2%), but parietal
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and occipital cortex remained at the same level. These
increases in K1 are consistent with the work of Carson et al
(1998) and most likely reflects time-related CBF increases
associated with isoflurane administration (McPherson et al,
1994). These small increases in K1 measures indicate that
any procaine-induced flow increases may be slightly over-
estimated.

Peripheral Measures

There was no significant effect of procaine administration
dose on heart rate (HR: F¼ 1.21, df¼ 5,10, p¼ ns), systolic
or diastolic blood pressure (SYS: F¼ 0.90, df¼ 5,10, p¼ ns;
DIA: F¼ 1.04, df¼ 5,10, p¼ ns;), respiration rate (RR:
F¼ 1.26, df¼ 5,10, p¼ ns), or pCO2 (pCO2: F¼ 1.46,
df¼ 5,10, p¼ ns). Although most measures significantly
decreased with time (HR: F¼ 11.27, df¼ 5,10, p¼ 0.000;
SYS: F¼ 6.47, df¼ 5,10, p¼ 0.000; DIA: F¼ 2.45, df¼ 5,10,
p¼ 0.030; RR: F¼ 6.64, df¼ 5,10, p¼ 0.000; pCO2: F¼ 8.37,
df¼ 5,10, p¼ 0.000), a drug� time interaction was only
observed with pCO2 which was significantly increased on
the highest dose (0.500 mg/kg/min) after procaine admin-
istration and returned to baseline levels after cessation of
the loading phase (HR: F¼ 0.51, df¼ 5,10, p¼ ns; SYS:
F¼ 0.64, df¼ 5,10, p¼ ns; DIA: F¼ 0.94, df¼ 5,10, p¼ ns;
RR: F¼ 0.83, df¼ 5,10, p¼ ns; pCO2: F¼ 1.59, df¼ 5,10,
p¼ 0.016).

Global Effects

The IC50 values generated by the two fitting methods (two-
parameter and three-parameter) differed by approximately
a factor of 2. For example, the average cortical ROI IC50

values were 1.31 mM and 0.75 mM for the two- and three-
parameter models, respectively. The percent coefficient of
variation of IC50 from the fits was comparable at B30%,
thus model selection could not be performed based on
goodness-of-fit. In subsequent results, the two-parameter
results were chosen over the three-parameter results,
because the former model directly accounted for day-to-
day and animal-to-animal variability of baseline [18F]FP-
TZTP binding potential (Table 1).

Figure 1 depicts (top and middle panels) representative
[18F]FP-TZTP V images with and without procaine coad-
ministration in a single animal at the highest dose of 0.5
mg/kg/min. Baseline and procaine global [18F]FP-TZTP
specific binding is reported in Table 1. Procaine, in a dose-
related manner, blocked average cortical [18F]FP-TZTP total
specific binding (F¼ 51.45, df¼ 5,10, p¼ 0.0001; Figure 2).

Procaine significantly increased average cortical [18F]FP-
TZTP DK1 values (F¼ 6.23, df¼ 2,10, p¼ 0.0071), however,
not in a sigmoidal dose-related manner (Table 1). The
peak change (52%) in K1 occurred at the low dose of
0.016 mg/kg/ml (mean procaine plasma level¼ 0.65 mM;
see Figure 1 bottom panel) and had successively smaller
increases with each higher dose, although still increased by
20% at the highest dose of 0.5 mg/kg/min. The post hoc
analysis of dose revealed all doses combined resulted in
significantly higher DK1 values compared to the baseline
study (baseline: 5.7717.0%; procaine: 28.6717.3; F¼ 11.28,
df¼ 1, 10, p¼ 0.007). This effect was attributable primarily
to 0.016 mg/kg/min dose with a 51.7% increase (dose 1 vs

baseline: F¼ 27.16, df¼ 1, 10, p¼ 0.002) and also to the
0.031 mg/kg/min dose with a 31.5% increase (dose 2 vs
baseline: F¼ 23.54, df¼ 1, 10, p¼ 0.02).

Regional Effects

The dose–response relationship of [18F]FP-TZTP specific
binding across the regions mirrored the global findings
(Table 2). The regional IC50 did not vary significantly across
the areas measured and ranged from 1.00 to 2.25 mM
(F¼ 0.88; df¼ 12,24; p¼ ns).

[18F]FP-TZTP DK1 (Table 2) varied significantly across
ROIs (F¼ 5.58; df¼ 2,12; p¼ 0.0001) and across procaine
doses (F¼ 5.61; df¼ 4,8; p¼ 0.02); however, there was no
interaction of region� dose (F¼ 0.79; df¼ 60,120; p¼ ns).
In the regional post hoc analysis, the DK1 of the anterior
paralimbic areas (including the amygdala, anterior cingu-
late, basal forebrain nuclei, hippocampus, and prefrontal
cortex, mean DK1 ¼ 34.7%) was significantly increased
compared with other regions (including posterior cingulate,
occipital cortex, parietal cortex, cerebellum, and brainstem;
mean DK1 ¼ 21.0%, F¼ 29.05, df¼ 1,24, p¼ 0.0001).

DISCUSSION

In this PET study of anesthetized monkeys, procaine
blocked the binding of a muscarinic ligand in a dose-
related manner, globally and uniformly across the primate
brain. The IC50 for the cortex was estimated to be 1.31 mM,
which corresponds to plasma levels achieved between
infusion doses 0.0312 and 0.0625 mg/kg/min procaine. This
is in the proximity of in vitro assessments of M2 muscarinic
receptor Kd of 4 mM as determined in rat hippocampal slices
and guinea-pig ileum (Hisayama et al, 1989; Sharkey et al,
1988). Given the nearly 100% blockade achieved, these
results support a direct interaction of procaine with the
same muscarinic receptors to which [18F]FP-TZTP is
binding. Furthermore, the V images of procaine adminis-
tration at the maximal dose in this study were essentially
identical to the V images obtained during the preblocking
experiments with [18F]FP-TZTP studies (Carson et al, 1998).

Although procaine is known to selectively increase limbic
electrophysiologic activity in animals and anterior para-
limbic perfusion in humans (Heynen et al, 1995; Ketter et al,
1996; Munson et al, 1970; Parekh et al, 1995; Post, 1981;
Post et al, 1984; Racine et al, 1975, 1979; Wagman et al,
1967), the lack of regional variation in IC50 values suggests
that the competition of procaine with [18F]FP-TZTP binding
sites is similar across the brain. Furthermore, these data
suggest that procaine’s limbic selectivity is most likely not
a result of limbic muscarinic receptors having enhanced
regional sensitivity to procaine over that of other brain
regions.

Nonetheless, the selective activation of paralimbic struc-
tures by procaine could still involve cholinergic mechan-
isms. Amygdalar neurons via muscarinic mediation have
been associated with bursting phenomena (Yajeya et al,
1997), postsynaptically (Washburn and Moises, 1992) and
presynaptically (Sugita et al, 1991). Bursting activity was
further tied to a complement of presynaptic muscarinic
receptors that were estimated to be comprised of 50% M3,
30% M2, and 20% or less M1, but most likely not due to the
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well characterized M-current (Yajeya et al, 1997). Moreover,
similar neuronal depolarization responses due to choliner-
gic mechanisms have been implicated in other paralimbic
structures such as hippocampus, entorhinal, and piriform
cortices and anterior cingulate (Benson et al, 1988; Colino
and Halliwell, 1993; Hasselmo and Bower, 1992; Klink and
Alonso, 1997; McCormick and Prince, 1986), as well as
septum, basal forebrain, striatum, thalamus, and neocortical
structures (Hasuo et al, 1988; Hsu et al, 1995; McCormick
and Prince, 1987; Szerb et al, 1994). Thus, it is possible that
procaine acting on M2 receptors could initiate bursting
activity and enhance firing in limbic regions. These results
suggest that the interaction of muscarinic receptors with the
local neuronal environment could contribute to procaine’s
limbic effects.

It is likely that procaine is acting as an agonist since:
cholinomimetics induce kindling similar to procaine

(Wasterlain et al, 1981); and physostigmine weakly facil-
itates procaine-induced kindling while atropine substan-
tially slows this process (Heynen et al, 1995). Moreover, the
clinical effects of physostigmine share similarities to
procaine (Janowsky et al, 1986).

Conversely, however, antagonist activity is suggested
by procaine competitively inhibiting acetylcholine-induced
contraction (Ishii and Shimo, 1984) of guinea-pig cecum.
Furthermore, procaine inhibits opening of cation channels
on guinea-pig ileal smooth muscle cells thus affecting the
acetylcholine-induced cationic currents; GTPgS currents are
inhibited in a similar manner (Chen et al, 1993). Lastly,
procaine is known to have a biphasic effect on neuronal
excitation with anticonvulsant activity at lower concentra-
tions and proconvulsant activity at higher concentrations
(De Jong, 1994; Foldes et al, 1960, 1965), which could reflect
both agonist and antagonist cholinergic activity.

Effects of Procaine on [18F]FP–TZTP Binding

Effects of Procaine on [18F]FP–TZTP K1 Measures

Baseline

Procaine

-25 -20 -15 -10 -5 0

+5 +10 +15 +20 +25 +30

-25 -20 -15 -10 -5 0

+5 +10 +15 +20 +25 +30

-25 -20 -15 -10 -5 0

+5 +10 +15 +20 +25 +30

10 60mL/mL

0.12 0.35 0.58 0.83 1.02

K1 Increase
(mL/min/mL)

a

b

Figure 1 (a) Coronal slice presentation of volume of distribution images (V) from a single animal displaying the significant reduction in specific binding of
[18F]FP-TZTP by procaine. Global reduction in specific binding in this subject was 86.9%. Upper panelFbaseline binding is fairly uniform; lower
panelFprocaine administration (0.5mg/kg/min) is essentially identical to preblocking studies with FP-TZTP (Carson et al, 1998). (b) Procaine increased K1
measures the greatest in the anterior cingulate, striatum, and basal forebrain nuclei. Data represents a subtraction image in a single monkey (0.016mg/kg/min
procaine minus baseline). The PET images were registered to the animal’s MR images; coordinates are mm rostral (þ ) and caudal (�) to ear canals.
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Cerebral blood flow, as measured by K1, significantly
increased globally and regionally in the anterior paralimbic
regions with all procaine doses, but the relationship of
procaine dose and K1 increase appears to be more complex
than that observed with the binding data. The most robust
increase was observed at the lowest dose of procaine and all

subsequent higher doses resulted in less of an increase
above baseline saline condition. The largest K1 changes
occurred at plasma levels near the IC50. This suggests that
the K1 effects associated with the lower doses could possibly
be related to M2 muscarinic blockade. However, the
apparent reduction of the K1 increase at the subsequently
higher doses might be explained by procaine’s effects on
sigma or other receptors, or be a direct effect of the M2

receptors yielding a biphasic relationship of procaine dose
on K1. Allosteric modulation of the muscarinic receptor has
been documented with cocaine (Flynn et al, 1992), and
given the structural similarities between procaine and
cocaine, such modulation could account for a smaller
change in K1 at higher doses. Another potential contributor
to the complex K1 changes observed in this study could be
the reduced ability of the model to fit K1 with higher
receptor occupancy (Carson et al, 1998), resulting in an
underestimation of K1. This would yield lower flow changes
than would be expected with a direct receptor blockade to
flow relationship.

While it would be enticing to suggest that these K1

changes reflect actual blood flow alterations, caution should
be exercised. Despite the strong correlation of cerebral
blood flow and K1 (r¼ 0.85; Carson et al, 1998), the
relationship of blood flow changes to procaine administra-
tion in this study can only be inferred. However, the
regional pattern of K1 increases in this study is similar to
the blood flow increases observed in humans (Ketter et al,
1996). The K1 data indicate that procaine binding to
cholinergic M2 receptors may contribute to the overall
activation of anterior paralimbic regions. This suggestion is
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Figure 2 Procaine blocks cortical [18F]FP-TZTP binding potential in a
dose-related fashion that follows the saturation binding curve (solid line)
with an IC50 of 1.4 mM with an estimated accuracy of 70.41mM. The
maximum blockade was 87% and minimum was 23%.

Table 2 Regional [18F]FP-TZTP Parameter Values

Specific binding Delivery rate

Region Baseline BP (ml/ml) IC50 (lM) DBPmax Baseline K1 (ml/min/ml) Maximal K1 increase

Cortex average 17.975.4 1.31 88.4 0.4070.09 51.7

Striatum 19.575.8 1.48 88.9 0.4870.12 73.6

Basal nuclei 17.475.2 1.51 93.2 0.4770.11 72.6

Anterior cingulate 21.476.7 1.00 85.4 0.4370.10 68.4

Hippocampus 17.075.1 1.65 92.0 0.4670.11 57.5

Amygdala 15.275.0 1.74 94.2 0.4370.10 55.9

Thalamus 15.675.0 1.72 83.9 0.4670.12 55.1

Prefrontal 17.075.1 1.11 88.5 0.3670.09 54.8

Temporal 17.475.4 1.48 91.5 0.4170.10 54.2

Brainstem 9.273.3 2.25 97.7 0.4170.12 51.6

Posterior cingulate 19.175.7 1.36 85.2 0.4070.09 50.0

Cerebellum 8.972.9 2.12 100.4 0.6270.17 49.4

Parietal 18.875.8 1.24 84.9 0.3570.07 40.3

Occipital 14.974.4 1.52 93.3 0.3870.11 34.4

Primary sensory (V1) 14.974.5 1.51 92.7 0.4170.12 37.5

Primary auditory (A1) 21.676.2 1.37 87.6 0.4870.11 61.8

Primary somatosensory(S1) 15.274.8 1.45 91.4 0.3370.07 52.1

Primary motor (M1) 16.775.5 1.19 89.9 0.3470.07 66.6

Cortical and regional IC50 and DBPmax were estimated by saturation binding model for one site competition; their values remain fairly uniform across brain regions.
Procaine significantly increases K1 values in all regions, especially in limbic areas; maximal K1 increases listed here occurred with 0.0156mg/kg/min procaine. BP and K1
values are mean7SD.
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supported by preferential reductions in prefrontal cortex
blood flow after scopolamine injection in humans in xenon-
133 PET studies (Honer et al, 1988), which are reversed by
physostigmine (Prohovnik et al, 1997). Also, carbachol
injection into the substantia inominata increases blood flow
globally and in many limbic areas in rats (Barbelivien et al,
1999).

Procaine can have autonomic effects, such as increases or
decreases in heart rate or blood pressure, when adminis-
tered i.v. in humans (Foldes et al, 1965, 1960; Haasio et al,
1988; Scott, 1975). In this study, the minimal autonomic
decreases observed are consistent with known effects rela-
ted to time on anesthesia. It is notable that significant cere-
bral effects occurred while the peripheral effects were maximal.

There are several limitations to this study. Few animals
were studied; despite this, the dose–response relationship of
procaine blockade of [18F]FP-TZTP was robust and con-
sistent across each monkey (Figure 2). Further, the use of
only rhesus monkeys suggest caution in extrapolation to man.

General anesthesia precluded the collection of behavioral
measures during procaine administration restricting the
scope of the study; the ability to relate the degree of
blockade to behavioral measures would be a key element in
determining a clearer role of the muscarinic system in the
emotional and sensory effects of procaine. The general
anesthesia (Durieux, 1996) may have confounded the K1

changes observed, or interacted with procaine to alter the
muscarinic activity (Brett et al, 1988; Dilger et al, 1992,
1993). Ketamine–muscarinic interactions (Durieux, 1995)
may have also confounded the binding changes observed,
but these effects would be present at baseline and with
procaine. Anesthesia may have also limited the physiologi-
cal changes potentially induced by procaine, either directly
or indirectly.

Finally, different methods from those used in the human
studies were necessary for the acquisition of the binding
potential data, including the [18F]FP-TZTP measurement
after plasma procaine levels had leveled off, as well as the
use of a constant infusion paradigm rather than a bolus
administration. This may have resulted in assessing the
procaine-flow relationship under different physiological
conditions than in the human studies, limiting the ability
to extrapolate from this study to the human studies.

With these caveats in mind, considerable evidence
suggests a role for the cholinergic system in normal and
pathological emotions. An enhanced ratio of cholinergic to
adrenergic function has been hypothesized to play a role in
mania and depression (Fritze, 1993; Janowsky et al, 1972b).
Cholinergic challenge studies lend support to this theory.
For example, physostigmine can reduce manic symptoms
and exacerbate depressive symptoms in bipolar patients
(Janowsky et al, 1972a). Furthermore, physostigmine
administration results in relapse of depressive symptoms
in bipolar patients successfully treated with lithium, while
healthy controls do not develop depressed mood. These
patients have concomitant hormonal disturbances and emo-
tional arousal expressed as dysphoria (Janowsky et al, 1986).

Arecoline, a nonselective muscarinic agonist, has also
induced dysphoria in mood disorder patients whether or
not they were currently depressed; this was greater in
individuals with a family history of depression compared to
those without such history (Gillin et al, 1991; Nurnberger

et al, 1989). Both arecoline (Sitaram et al, 1980) and donepezil,
a cholinesterase inhibitor (Perlis et al, 2002) decrease REM
latency in patients with major depression, but not in healthy
controls.

In a [15O] blood flow study analyzing the functional
associativity of cholinergic forebrain regions with and
without procaine administration, some abnormalilties were
found to normalize with procaine (Benson et al, unpub-
lished data). At baseline, patients with mood disorders
compared to healthy controls show significantly weaker
positive relationships among the cholinergic forebrain
regions, which became stronger and similar to controls
with procaine. Thus, commonly reported alterations in pre-
frontal, anterior cingulate, temporal, striatal, and cerebellar
brain regions in mood disorders (see reviews; Dougherty
and Rauch, 1997; Ketter et al, 1997; Drevets, 1998) may have
a cholinergic component to their dysregulation.

In conclusion, these data demonstrate that intravenous
procaine administration in anesthetized monkeys was
associated with a dose-related blockade of the M2 muscari-
nic ligand, [18F]FP-TZTP. This is the first demonstration of
muscarinic cholinergic binding of procaine in primates,
in vivo. In addition, cerebral blood flow (K1) was signifi-
cantly increased in limbic regions of the brain. If significant
receptor occupancy occurs at comparable plasma levels in
humans, these data suggest a possible cholinergic contribu-
tion to the robust emotional and sensory effects of procaine
and its ability to selectively activate amygdala and closely
related anterior paralimbic structures. Thus, based on the
binding and flow data presented here, procaine could prove
to be another way of assessing muscarinic receptor tone in
limbic areas in patients compared to healthy volunteers.
Further studies to explore the relationship of muscarinic
receptor activity with behavioral assessments, and use
of agonist and antagonist ligands could delineate a clearer
role of the cholinergic system in the effects of procaine on
emotion.
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