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Cytokines are a large and diverse group of polypeptides that are rapidly released in response to tissue injury, infection, and inflammation.

Besides their effects in the periphery, cytokines also affect the central nervous system (CNS). There has been increasing interest in the

potential role of cytokines in the behavioral features of depressive disorders. One cytokine that might be a candidate for a role in the

etiology of depression is leukemia inhibitory factor (LIF). LIF mRNA has been detected in the hypothalamus, hippocampus, amygdala,

cerebellum, cerebral cortex, and basal forebrain nuclei. The role of LIF in the CNS has not been fully elucidated. Based upon the

hypothesis that cytokines might have a role in depression, the present study characterized the behavior of mice with a targeted disruption

of the LIF gene (LIF knockouts) in the forced swim test, an animal model used to measure depressive-like behavior and the response to

antidepressants. It was found that LIF knockout mice show reduced immobility in the forced swim test, suggesting that LIF might have a

potential role in the etiology of some forms of depression.
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INTRODUCTION

Cytokines are a large and diverse group of polypeptides that
have pleiotropic actions, including the regulation of
metabolism, growth, and differentiation. They are rapidly
released in response to tissue injury, infection, and
inflammation. Although cytokines generally act on hemo-
poietic or immune cells, they also serve as growth and
differentiation factors for other cell types. Cytokines
commonly behave as paracrine or autocrine cell regulators,
mediating adjacent cell functions. However, they can act as
classic endocrine secretions, emanating from proximal
tissues, traversing the circulation, and impacting a distal
target (Reichlin, 1999).
In addition to their effects in the periphery, cytokines

affect the central nervous system (CNS). There are four
well-established mechanisms by which cytokines can enter

the brain or affect CNS activity: (1) disruption and
traversing through the blood–brain barrier; (2) brain
penetration through circumventricular organs (central sites
that have capillaries with open junctions and abundant
fenestrations); (3) action on afferent peripheral nerves that
signal the brain; and (4) de novo CNS synthesis (Licinio and
Wong, 1997). The constitutive expression of cytokines
and cytokine receptors occurs on most cell types through-
out the brain. Cytokines affect neurotransmission, alter
synaptic plasticity, and Ca2þ signaling (Rudge et al,
1996; Vitkovic et al, 2000). Thus, cytokines are neuromo-
dulators in addition to being inflammatory mediators
(Vitkovic et al, 2000). These findings suggest that cytokines
could be involved in centrally mediated processes, and
might play a role in behavioral and physiological responses
besides inflammation (Suzuki et al, 1996; Chesnokova et al,
1998).
There has been increasing interest in the potential role of

the immune system and cytokines in the behavioral features
of depressive disorders (Kent et al, 1992; Connor and
Leonard, 1998; Miller, 1998; Dantzer et al, 1999; Yirmiya
et al, 1999; Leonard, 2001; Konsman et al, 2002). Symptoms
of depression are exceedingly common in a wide range of
inflammatory and autoimmune diseases. In addition, some
patients with major depression have alterations in immune
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function. Preclinical studies have shown that interleukin-1
(IL–1) or lipopolysaccharide (LPS), which induces the
synthesis and release of many cytokines, produce a
behavioral syndrome known as ‘sickness behavior’. This
syndrome shares many features in common with major
depression, including anhedonia, listlessness, altered sleep
patterns, increased hypothalamo-pituitary-adrenal (HPA)
axis activity, reduced appetite, and social withdrawal
(Bluthe et al, 1997; Connor and Leonard, 1998; Miller,
1998; Licinio and Wong, 1999; Wichers and Maes, 2002).
These symptoms are largely attenuated by the prior
administration of the IL-1 antagonist IL-10 (Bluthe et al,
1999). The preclinical observations have been confirmed in
humans. For example, recent studies have shown that in
some cases major depression is accompanied by increased
synthesis and release of circulating proinflammatory
cytokines ((IL–1, IL-6, and tumor necrosis factor (TNF))
(Connor and Leonard, 1998; Maes, 1999; Miller, 1998).
Furthermore, administering LPS, interferon-g, INF-g, or IL-2
to humans elicits symptoms of depression (Yirmiya et al,
2000; Wichers and Maes, 2002).
Another cytokine that might play a role in the etiology of

depression is leukemia inhibitory factor (LIF). LIF is a
member of the common IL-6 cytokine family, comprised of
IL-6, oncostatin M, IL-11, ciliary neurotropic factor, and
cardiotropin. All cytokines in this family interact with a
common gp130 receptor subunit, and utilize the JAK-STAT
signaling pathway. LIF initially was noted for its ability to
induce differentiation of murine M1 leukemia cells. Sub-
sequent studies revealed that it has diverse biological
activity (Auernhammer and Melmed, 2000). LIF and LIF
receptors are constitutively expressed in human pituitary
cells (Akita et al, 1997) and in murine hypothalamus and
pituitary (Auernhammer and Melmed, 2000). LIF, along
with corticotropin-releasing hormone (CRH), stimulates
ACTH secretion in response to emotional and inflammatory
stress (Chesnokova et al, 1998; Auernhammer et al, 1998).
LIF is highly induced in the hypothalamus and pituitary in
response to inflammation (Chesnokova and Melmed, 2000;
Chesnokova et al, 2002), and it maintains a prolonged and
sustained activation of the HPA axis under chronic
inflammatory challenge. Thus, in addition to CRH, LIF
mediates HPA axis activity.
LIF mRNA has been detected in the hypothalamus,

hippocampus, amygdala, cerebellum, cerebral cortex, and
basal forebrain nuclei (Lemke et al, 1996; Gadient et al,
1998; Auernhammer and Melmed, 2000; Chesnokova et al,
unpublished data). However, the role of LIF in the CNS has
not been fully elucidated. LIF is required for neuronal
survival after injury (Sugiura et al, 2000), and prevents
oligodendrocyte death in animal models of multiple
sclerosis (Butzkueven et al, 2002). In vitro, LIF induces a
switch from the noradrenergic to the cholinergic neuro-
transmitter phenotype in sympathetic neurons (Cervini et al,
1994). Interestingly, tyrosine hydroxylase mRNA is en-
hanced in neuronal cultures incubated with anti-LIF
antibodies, suggesting that LIF might be involved in the
regulation of noradrenergic systems (Cheng and Patterson,
1997).
Based upon the hypothesis that proinflammatory cyto-

kines might be involved in the etiology of depression, it was
decided to study the behavior of mice with a targeted

disruption of the LIF gene (LIF knockouts) in the forced
swim test, an animal model used to measure depressive-like
behavior and the response to antidepressants (Porsolt et al,
1977a, b; Borsini and Meli, 1988). In order to further
characterize the mice, locomotor activity was measured in
the open field test, and their behavior was assessed in the
elevated plus maze, an animal model of anxiety (Dawson
and Tricklebank, 1995).

MATERIALS AND METHODS

Animals

Adult male and female mice with a disrupted LIF gene
(LIFKO mice) and their wild-type (WT) counterparts were
used in the experiments. LIFKO mice initially were
generated by Dr Stewart (Roche Institute of molecular
biology, Roche Research center, Nutley, NJ) on mice with a
C57Bl/6j and DBA/2 hybrid background (B6D2F1) (Stewart
et al, 1992). The mice used for the present experiments were
bred and raised in our vivarium. The original breeding pairs
were backcrossed to one of the parental genotypes (C57BL/
6j) at least five times prior to using them in our
experiments. Thus, genetic background of resulting LIFKO
mice was comprised of more than 98% of C57Bl/6j
genotype. For the experiments, LIFKO and WT mice were
obtained from heterozygous matings. All pups were
genotyped by tail biopsies at 3 weeks of age. For the PCR-
based DNA analysis, the tip of the tail was cut while the
mice were under isoflurane-induced anesthesia. DNA was
extracted using a genomic DNA extraction system (Pur-
igene; Genetech, Research Triangle Place, NC). The
sequences of primers and conditions used for PCR analysis
have been described previously (Chesnokova et al, 1998).
After screening, the mice were separated by sex and group
housed. Animals were maintained on a 14 : 10 light–dark
cycle with lights on at 0700 with food and water available ad
libitum. All experiments were run between 0900 and 1300 in
order to minimize the effect of circadian rhythms. The level
of illumination in the rooms during experimental testing
was 325 lumens.

Forced Swim Test

The forced swim test was carried out using a procedure
modified from the original report by Porsolt et al (1977a).
The mice were individually placed into a glass cylinder
(25 cm height, 10 cm diameter) containing 8 cm of water
maintained at 22–241C. Every 30 s for a total of 6min the
mice were rated for immobility, defined as the absence of
active, escape-oriented behaviors such as swimming,
jumping, rearing, sniffing, or diving. At each time point
the mice were observed for 10 s and immobility was
recorded as being present or absent. Any mouse appearing
to have difficulty keeping its head above water was removed
from the cylinder and deleted from the study. The rater
was blind to the experimental treatment. The procedure
has been validated in our laboratory by showing the
treatment with imipramine dramatically decreases immo-
bility in WT, female mice (Pechnick et al, unpublished
data).
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Open Field Test

The open field test was used to measure spontaneous
locomotor activity. The Open Field apparatus (San Diego
Instruments, San Diego, CA) was comprised of open
topped, clear Plexiglas boxes, measuring 1600 � 1600 and
1500 high. On the day of the experiments the subjects were
loaded into transfer cages and brought into the experi-
mental room. They remained in the transfer cages in the
experimental room for 30min, after which each subject is
placed into the center of the Plexiglas boxes. Both central
and peripheral beam breaks (locomotion) were recorded in
5min bins for 60min. The central zone was defined as a
1200 � 1200 region in the center of the box.

Elevated Plus-Maze

The elevated plus maze consisted of two open (200 � 1200)
and two darkened, closed arms (200 � 1200) emanating from a
common central platform (200 � 200) to form a plus shape.
Walls (600) isolated the closed arms. The entire apparatus
was raised 23 cm above its base, and a light was placed
above the maze. Testing commenced by placing a mouse on
the central platform, facing an open arm. A 5min
observation period was used, during which the following
data were recorded: number of open arm entries; total arm
entries (open and closed); and time spent in the open arms.

Statistical Analyses

For the forced swim test, the number of time points where
immobility was scored during the last 4min of the
experimental session were summed for each subject
(Porsolt et al, 1977a). The summed scores were analyzed
by two-way ANOVA (strain� sex), followed by one-way
ANOVA for each sex. For locomotor activity, total beam
breaks across the 60min session were summed for each
subject. The summed scores were analyzed by two-way
ANOVA. For the elevated plus maze, the number of open
and closed arm entries, the proportion of open to total arm
entries, and the time spent in the open arms were analyzed
by two-way ANOVA, followed by one-way and Scheffe’s
tests for comparisons between treatment groups. A criterion
of po0.05 was set for the rejection of the null hypothesis.

RESULTS

No mice were deleted from the study. In the forced swim
test, there were significant strain effects (F(1,58)¼ 14.4;
po0.01), but neither the sex (F(1,58)¼ 4.0; p¼ 0.05) nor the
interaction (F(1,58)¼ 0.09; p¼ 0.34) effects were statisti-
cally significant. Both the male (Figure 1a) and female
(Figure 1b) LIFKO mice showed significantly less immobi-
lity compared to the WT mice (F(1,18)¼ 15.8; po0.01; and
F(1,40)¼ 5.2; p¼ 0.03, respectively).
In the open field test, there were no significant strain

(F(1,61))¼ 0.33; p¼ 0.57) or sex (F(1,61)¼ 0.48; p¼ 0.49)
differences in total locomotor activity between the WT and
LIFKO mice (Figure 2). In addition, there were no
significant strain (F(1,61¼ 3.47; p¼ 0.07) or sex
(F(1,61)¼ 0.001; p¼ 0.98) differences in the proportion of

locomotor activity in the central vs the peripheral areas of
the boxes (Figure 3).
In the elevated plus maze (Figures 4a–c), there were no

statistically significant strain differences in the number of
open arm entries (F(1,49)¼ 3.223; p¼ 0.08), time in the
open arms (F(1,49)¼ 2.620; p¼ 0.11), or the number of total
arm entries (F(1,49)¼ 3.882; p¼ 0.05). There was a
significant sex difference in the number of total arm entries
(F(1,49)¼ 12.866; po0.01), but not in the number of open
arm entries (F(1,49)¼ 3.735; p¼ 0.06) or the time in the
open arms (F(1,49)¼ 0.001; p¼ 0.98). There were statisti-
cally significant interaction effects for the number of open
arm entries (F(1,49)¼ 14.929; po0.01) and time in the open
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Figure 1 Summed immobility score for male and female WT and LIFKO
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arms (F(1,49)¼ 5.914; p¼ 0.02), but not for the number of
total arm entries (F(1,49)¼ 3.845; p¼ 0.06). Individual
comparisons indicate that the WT male mice had fewer
open arm entries, spent less time in the open arms, and had
fewer total arm entries than the LIFKO male mice. In
addition, the WT male mice had fewer open arm entries and
fewer total arm entries than the WT female mice.

DISCUSSION

Little is know about behavior or physiology in LIF knockout
mice. The data indicate that the LIFKO mice show less
immobility in the forced swim test. One possible explana-
tion for this finding is that the LIFKO mice are hyperactive
compared to the WT mice. The data from the open field test
demonstrate that there are no differences in locomotor
activity between the LIFKO and WT mice. In the elevated
plus maze, the total number of entries can be used as an
indicator of general activity. Although the male LIFKO mice
had significantly more total arm entries than the male WT
mice, there were no significant differences between the
female LIFKO and WT mice. As both sexes showed the
strain difference in the forced swim test, this suggests that
hyperactivity per se is not responsible for the decreased
immobility in the forced swim test. However, the mechan-
isms underlying the decreased immobility need not be the
same in both sexes. A second possible explanation for less
immobility in the LIFKO mice is that they showed higher
levels of fear or anxiety. Such fear could be reflected by
more swimming (ie less immobility). The data from the
elevated plus maze show that the LIFKO mice do not have
higher levels of anxiety. In fact, the male LIFKO mice show
reduced levels of anxiety, as measured by increased open
arm entries and more time spent in the open arms. Reduced
activity in the central component of the boxes in the open
field test can be used as an indicator of increased
fearfulness. As there were not significant strain differences,
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this further supports the contention that the LIFKO mice do
not show increased fear.
Taken together, the results suggest that the decreased

immobility found in the LIFKO mice is not a consequence
of hyperactivity or increased fearfulness, but could be due
to antidepressant-like behavior as measured by the forced
swim test. Yamada et al (2000) examined tumor TNF-a
knockout mice, and found reduced immobility in the forced
swim test. However, they also found less time spent in the
open arms in the elevated plus maze, which led Yamada et al
(2000) to conclude that the TNF-a knockout mice were in a
state of increased anxiety and the reduced immobility due
to ‘inappropriate coping responses’, rather than reduced
depression. As the absence of LIF was associated with
antidepressant-like behavior, then it is possible that
increased levels of LIF could lead to increased immobility
in the forced swim test. LIF is expressed in the hypotha-
lamus (Chesnokova and Melmed, 2000), amygdala, and
hippocampus (Chesnokova et al, unpublished data), regions
of the CNS that are associated with depressive and stress-
related behaviors as well as in antidepressant response
(Manji et al, 2001; Davidson et al, 2002). Thus, LIF might be
involved in the etiology of some forms of depression.
There are a number of potential mechanisms whereby LIF

and other cytokines could produce depressive behavior.
Although little is known about the effects of LIF on
neurotransmission within the CNS, other cytokines affect
neurotransmitters that have been implicated in the etiology
of depression (eg serotonin and norepinephrine). For
example, some cytokines have profound effects on seroto-
nergic neurotransmission (Heyes et al, 1997; Cunningham
and de Souza, 1993; Ramamoorthy et al, 1995; Barkhudar-
yan and Dunn, 1999; Hayley et al, 1999; Mossner and Lesch,
1998). Cytokines also affect noradrenergic neurotransmis-
sion (Leonard, 2001; Dunn et al, 1999). Cytokine-mediated
dysregulation of these monoaminergic systems could be
involved in depressive symptomatology.
Dysregulation of the HPA axis is observed in some

depressed patients (Gertsik and Poland, 2004). As LIF
(Chesnokova et al, 1998, 2002; Chesnokova and Melmed,
2000) and other cytokines (Turnbull and Rivier, 1999) exert
important changes in the activity of the HPA axis, it is
conceivable that some of the behavioral effects of LIF and
other cytokines might be mediated through the HPA axis.
Although cytokines usually are thought of as immuno-
modulators, they also are rapidly expressed in the CNS in
response to nonimmunologic stressors (Shintani et al, 1995;
Shizuya et al, 1998). Thus, the HPA response to stressors
might be modified by changes in the release of cytokines.
We have found that LIFKO mice demonstrate a reduced
HPA axis response to both emotional and inflammatory
stress (Chesnokova et al, 1998; Auernhammer et al, 1998).
Furthermore, LIF stimulates glucocorticoid receptor trans-
location and inhibits hormone-induced glucocorticoid
receptor-mediated gene transcription (Chesnokova et al,
unpublished data), thus producing glucocorticoid resis-
tance, which is a pathophysiologic phenotype of depression.
Therefore, it is possible that some of the behavioral effects
of LIF are due to changes in the function of the HPA axis.
CRH has been implicated in the etiology of depression

(Nemeroff, 1996). Although multiple aspects of the HPA
axis appear to be dysregulated in depression, a primary

upregulation of CRH secretion can account for most, if not
all, aspects of the endocrine abnormalities. There are
clearcut interactions between LIF and CRH (Bousquet
et al, 1997). It is possible that the reduced immobility of
the LIFKO mice in the forced swim test is secondary to
changes in CRH. However, hypothalamic CRH mRNA
expression is not reduced, but slightly elevated in LIFKO
mice. Furthermore, basal corticosterone levels are not
different between LIKKO and WT mice (Chesnokova et al,
1998). These findings suggest that the reduced immobility
in the forced swim test in the LIFKO mice is not due to a
decrease in central CRH expression.
Although that data suggest that LIF might be involved in

the etiology of depression, it is not possible to establish
conclusively a relation between the LIF gene and depression
based upon the small number of tests conducted. More tests
(eg tail suspension and learned helplessness) will need to be
conducted. Furthermore, there are limitations regarding the
interpretation of studies evaluating the phenotype of a
knockout mouse. First, the genetic mutation has been
present from the time of conception throughout develop-
ment, making it difficult to distinguished phenotypic
changes due to the mutation itself from the changes caused
by alterations that take place during development. For
example, LIFKO mice might be exposed to lower concen-
trations of glucocorticoids during development, which
might contribute to their behavioral phenotype. Second, if
a gene is expressed in different tissues where it might have
different functions, or at different times, its global
inactivation might have multiple consequences. Third, the
genetic background on which the mutation is placed can
affect the phenotypic expression of the knockout. Therefore,
a knockout animal is much more complex than simply a
animal lacking a single gene, and interpretation of data
from experiments using this approach must take into
consideration these potential confounds.
In summary, the results of the present study show that

mice lacking LIF have reduced immobility in the forced
swim test. The decreased immobility found in the LIFKO
mice is not a consequence of hyperactivity or increased
fearfulness. These findings suggest that LIF might have a
potential role in the etiology of some forms of depression,
and warrant further studies on the behavioral effects of LIF
and its role in CNS function.
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