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There is decreased activity of glutamate carboxypeptidase II (GCP II) in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of

patients with schizophrenia. GCP II hydrolzses N-acetyl-a L-aspartyl-L-glutamate (NAAG), a peptide in the mammalian brain that binds to

the N-methyl D-aspartate (NMDA) receptor and a group II metabotropic glutamate receptor, both of which have been implicated in the

pathophysiology of schizophrenia. We examined the expression of GCP II mRNA in the DLPFC, entorhinal cortex (ERC), and

hippocampus in postmortem samples from patients with schizophrenia and normal controls using in situ hybridization followed by silver

grain detection. GCP II mRNA was detected in glial cells. Glial-rich regions, specifically the DLPFC and ERC white matter and the

molecular and polymorphic layers in the hippocampus, express high levels of GCP II mRNA. Given the earlier finding of decreased GCP II

activity in brains of subjects with schizophrenia, we expected to find lower GCP II mRNA levels in schizophrenia. Contrary to this

expectation, we found a significantly higher expression of GCP II mRNA in one of the brain areas examined, the hippocampal CA3

polymorphic region. This may reflect a compensatory increase to correct for the decreased activity of GCP II activity. Our findings

support the notion that the hydrolysis of NAAG is disrupted in schizophrenia and that specific anatomical regions may show discrete

abnormalities in GCP II synthesis.
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INTRODUCTION

Glutamate, the major excitatory neurotransmitter in the
mammalian brain, has been implicated in the pathophysiol-
ogy of schizophrenia (reviewed in Tsai and Coyle, 2002).
However, the precise nature of this abnormality has not
been elucidated, partially because regulation of glutamate
synthesis, release, receptor activation, and glutamate break-
down is complex and often difficult to study directly at
sufficient spatial and temporal resolution in patients with
schizophrenia. One important discovery implicating gluta-
mate receptors is the finding that antagonists of the N-
methyl-D-aspartate (NMDA) receptor, phencyclidine (PCP;
Javitt and Zukin, 1991), and ketamine (Krystal et al, 1994)
can cause positive, negative, and cognitive symptoms
resembling schizophrenia in healthy individuals and can

exacerbate psychotic symptoms in patients with schizo-
phrenia (Lahti et al, 1995, 2001). By blocking a subpopula-
tion of NMDA receptors, the dissociative anesthetics, like
PCP, increase glutamate release in the prefrontal cortex and
nucleus accumbens in rodents, producing behaviors that
mimic the schizophrenic state, such as increased locomotor
activity, stereotypies, and impaired performance on work-
ing memory tasks (Moghaddam and Adams, 1998). The
pretreatment of these animals with a group II metabotropic
glutamate receptor agonist (group II mGluR), LY 354740,
prevents the glutamate efflux and abolishes some of the
PCP-induced behaviors. Another potent mGluR2/3 receptor
agonist, LY 379268, has been shown to attenuate selectively
PCP-evoked increases in motor activity in a manner similar
to the effect of the atypical antipsychotic, clozapine
(Cartmell et al, 2000). Taken together, these data suggest
the involvement of NMDA receptors and group II mGluRs
in the pathophysiology of schizophrenia.
An endogenous peptide, N-acetylaspartateglutamate

(NAAG) targets both the NMDA receptor and one of the
group II mGluRs, that is mGluR3. It may function as a weak
agonist at NMDA receptors (Westbrook et al, 1986;
Trombley and Westbrook, 1990; Sekiguchi et al, 1992),
and is a highly selective agonist at mGluR3 receptors
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(Wroblewska et al, 1998). NAAG is the most prevalent and
widely distributed neuropeptide in the mammalian nervous
system (reviewed in Coyle, 1997; Neale et al, 2000). It meets
criteria for classification as a neurotransmitter, being
concentrated in synaptic vesicles (Williamson and Neale,
1988a; Renno et al, 1997) released in a calcium-dependent
manner upon depolarization (Williamson and Neale, 1988b;
Tsai et al, 1990), and is hydrolyzed by membrane-bound
peptidase. Immunocytochemical studies reveal colocaliza-
tion of NAAG in many putative glutamatergic pathways in
the human brain (Passani et al, 1997). Glutamate carboxy-
peptidase II (GCP II; previously known as N-acetyl-a-linked
acidic dipeptidase, NAALADase) is one enzyme that cleaves
NAAG to N-acetylaspartate (NAA) and glutamate (Slusher
et al, 1990).
Activity of GCP II determines the relative extracellular

levels of NAAG and glutamate (Stauch-Slusher et al, 1989).
NAAG has predominantly inhibitory actions by virtue of its
possible weak agonist activity at the N-methyl-D-aspartate
receptor, blocking the gating of the channel by endogenous
glutamate, with agonist activity at the mGluR3 receptor that
is negatively linked to cAMP (Neale et al, 2000). There is
evidence of decreased activity of GCP II in the PFC (�37%)
and hippocampus (�28%), with decreased glutamate levels
in these regions, and increased NAAG levels in the
hippocampus of the schizophrenic brain compared to
normal controls (Tsai et al, 1995). In vivo, magnetic
resonance spectroscopic imaging has revealed selective
reductions in NAA in the dorsolateral prefrontal cortex
(DLPFC) and hippocampus in schizophrenia (Bertolino
et al, 1996; Deicken et al, 1999). Additionally, the GCP II
gene is in proximity to the breakpoint region in chromo-
some 11 of the schizophrenia-linked translocation t (1 : 11)
(q42.1, q14.3) (Semple et al, 2001), suggesting its candidacy
as a susceptibility gene for schizophrenia.
This study was performed with the aim to elucidate the

cell specificity and expression pattern of GCP II mRNA in
the DLPFC and mesial temporal cortex in the normal
primate brain, and to compare levels of expression to
patients with schizophrenia. Our initial hypothesis, based
on findings of decreased GCP II activity in schizophrenia,
was that there is a decrease in GCP II mRNA levels in
schizophrenia. As discussed later in the paper, we found an
increase in GCP II mRNA levels in a specific hippocampal
region.

RESULTS

DLPFC

Cohort 1, consisting of subjects with schizophrenia and
normal controls, was used to perform the analysis of GCP II
mRNA in the DLPFC (Table 1). We did not find significant
differences between these two groups in terms of age (df1,27,
p¼ 0.89), pH (df1,27, p¼ 0.90), or postmortem interval
(PMI; df1,27, p¼ 0.11). There were no significant correla-
tions between GCP II mRNA and any of the demographic
variables (pH, PMI, age, lifetime exposure to antipsychotic
medication) analyzed (all R between �0.09 and 0.24, all
p40.2).
The normal distribution of GCP II mRNA in the DLPFC

was examined in humans and monkey sections using in situ

hybridization. GCP II mRNA hybridization signal from the
autoradiographic films was found in a similar distribution
in monkey and human brain. In the human, the GCP II
mRNA signal was detected in gray matter areas of the
middle frontal gyrus, but was more intense in the under-
lying white matter. Similarly, the GCP II signal in the
monkey was low in gray matter areas along the bank of the
principle sulcus, but was more intense in the underlying
white matter (Figure 1a,b). This finding suggests that non-
neuronal cells that are predominantly found in the white
matter, such as astrocytes and/or oligodendrocytes, may be
the primary sites of synthesis of GCP II in the primate brain.
Silver grain analysis, performed in the monkey sections,
revealed that silver grains corresponding to GCP II mRNA
were clustered over cells with a glial profile and were absent
over neurons (Figure 1c,d). The GCP II silver grains found
overlying cells with small nuclei that were stained with Nissl
supports the conclusion that GCP II synthesis occurs
predominantly in glia, either astrocytes or olidodendro-
cytes, rather than in neurons. GCP II mRNA is known to be
expressed in cells that coexpress glial fibrilliary acidic
protein (GFAP) and an astrocyte-specific glutamate trans-
porter, GLAST (Berger et al, 1999), suggesting that GCP II
mRNA is expressed primarily by astrocytes. The expression
pattern described for GCP II mRNA in the DLPFC in both
gray and white matter was similar in both normal controls
and patients with schizophrenia. The mixed model ANOVA
did not show a main effect of diagnosis (F¼ 0.41, df1,27,
p¼ 0.53) on GPC II mRNA levels in DLFPC of patients with
schizophrenia compared to controls. However, as expected,
there was a main effect of area with higher levels of GCP II
mRNA in white matter compared to gray matter (F¼ 65.12,
df1,27, po0.001). The interaction between diagnosis and
region was not significant (F¼ 0.38, df1,27, p¼ 0.54). The
removal of cases with highest PMIs (cases S6 and S7)
resulted in a more closely matched cohort (age (df1,25,
p¼ 0.58); pH (df1, 27, p¼ 0.2; PMI df1, 25, p¼ 0.40). Analysis
with this cohort also did not show any significant effect on
GCP II mRNA levels in the PFC between the two diagnostic
groups (effect of diagnosis F¼ 0.44, df1,25, p¼ 0.51; effect of
area F¼ 53.7, df1,25, po0.001; interaction between diagnosis
and area F¼ 0.65, df1,25, p¼ 0.43).

Hippocampal Region

Cohort 2 consisting of two groups, subjects with schizo-
phrenia and normal controls, was used to examine the GCP
II mRNA expression in the hippocampus. Using a t-test,
there was no significant difference between the two groups
for age (df1, 19, p¼ 0.96), pH (df1, 19, p¼ 0.89), or PMI (df1,19,
p¼ 0.17). Correlations were seen in GCP II mRNA levels
and pH (all R between 0.05 and 0.64, all p40.002). No
significant correlations between GCP II mRNA levels and
PMI or age were detected.
GCP II mRNA was detected in all mesial temporal

lobe sections examined from both patients and controls
(Figure 2a, 3). In the dentate gyrus and Ammon’s horn
of the hippocampus, GCP II mRNA was abundant in
the polymorphic layer (Figure 2a, arrow) as well as near the
pial surface of the fused hippocampal fissure (Figure 2a
arrowhead), while expression within the granule cell layer
and pyramidal neuronal layer was minimal. In fact, the
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expression pattern was inverse to that typically seen in the
hippocampus with other RNA probes that hybridize
strongly to neurons. Microscopic evaluation demonstrated
the presence of GCP II mRNA over glial cells (Figure 2c).
Highest density of signal of GCP II mRNA was found in
Ammon’s horn in a band curving along the ventricular
surface; this polymorphic layer is enriched with astroglial
cells and the increased hybridization signal found here is
consistent with a predominately glial localization of GCPII

mRNA (Du et al, 1990). In further support of the glial
localization of GCP II mRNA, silver grains were clustered
over glial cell nuclear profiles (Figure 2e). A similar
distribution was seen in the subiculum where the highest
GCP II mRNA signal was detected in the superficial outer
layer. In the entorhinal cortex, GCP II mRNA was higher in
the white matter compared to the gray. This regional
difference in GCP II mRNA levels was seen in both
diagnostic groups. The comparison of GCP II distribution

Table 1 Demographics of Subjects

Brain
no. Diagnosis

Age
(years) Race Sex

PMI
(h) pH Cohort

Last CPZ
equiv

(mg/day)

Daily CPZ
equiv (mg/

day)

Lifetime
CPZ

(� 106mg)

S1 CDS, S 75 AA M 41.5 6.29 1.2 400 400 5.3

S2 CDS 67 AA F 38.5 6.63 1.2 80 100 1.3

S3 CDS 31 C M 14 6.46 1.2 200 250 0.4

S4 CUS 23 AA M 42.5 6.48 1.2 400 480 3.3

S5 CPS 60 AA F 19 6.38 1.2 100 100 0.7

S6 CUS, S 30 AA M 72.5 6.32 1 1900 500 2.2

S7 CDS 35 AA M 79 6.7 1

S8 CPS 80 C M 13.5 6.05 1 30 50 0.7

S9 CPS 72 H F 52.5 6.15 2

S10 CDS,S 81 C F 11 6.78 1.2 100 150 2.1

S11 CUS 61 AA F 20 6.74 1 200 200 2

S12 CDS,S 38 AA M 61 6.5 1.2 800 60 11.8

S13 CDS 44 AA M 37 6.28 1.2 300 350 2.7

S14 CDS 41 AA F 51 6.08 1.2 2400 1135 10.4

S15 CDS 41 AA M 32 6.63 1.2 50 400 2.5

C1 Con 52 AA F 10 6.87 1.2

C2 Con 35 AA M 49.5 5.88 1.2

C3 Con,S 41 AA M 10 6.72 1.2

C4 Con 42 AA M 40 6.63 2

C5 Con 66 C F 29.5 6.37 1.2

C6 Con 32 AA M 15.5 6.77 1

C7 Con 24 AA M 12.5 6.59 1.2

C8 Con,S 38 AA M 32.5 6.14 1.2

C9 Con 18 AA M 14.5 6.51 1

C10 Con 83 AA M 66.5 6.01 1

C11 Con 56 AA M 33 6.09 1

C12 Con 63 C M 19 6.54 1.2

C13 Con 52 AA F 26 6.38 1.2

C14 Con 57 AA F 19 6.43 1.2

C15 Con,S 59 AA F 37 6.57 1

C16 Con 67 AA F 34 6.69 1

Cohort 1 Age (years) PMI pH Cohort 2 Age (years) PMI pH

Control 49.5+17.8 27.2+15.8 6.44+0.29 Control 47+13.3 24.8+13.0 6.45+0.30

Sch 50.5+19.7 38.0+21.9 6.45+0.23 Sch 52+19.6 36.4+16.2 6.42+0.21

PMI¼ postmortem interval; Dx¼ diagnosis; AA¼African American; C¼Caucasian; H¼Hispanic; Con¼ normal control; CDS¼ chronic disorganized schizophrenia;
CPS¼ chronic paranoid schizophrenia; CUS¼ chronic undifferentiated schizophrenia; S¼ comorbid substance use; CPZ¼ dose of antipsychotic medication in
chlorpromazine equivalents; daily CPZ¼ average daily dose; last CPZ¼ last known dose taken; lifetime CPZ¼ total amount taken over lifetime.
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in the mesial temporal lobe of monkeys revealed a pattern
of expression similar to that in the human (Figure 2b). At
the cellular level, silver grains were localized to glial cells in
both humans and monkeys (Figure 2c–f).
We tested whether GCPII mRNA levels differed in the

hippocampus of patients with schizophrenia vs controls.
While we did not detect a main effect of diagnosis (F¼ 1.81,

df1,12, p¼ 0.20), we did detect a significant main effect of
area (F¼ 24.34, df1,117, po0.001) and a significant interac-
tion between diagnosis and region (F¼ 2.63, df1,117,
p¼ 0.008). This result was followed up with post hoc
t-tests, which showed that GCP II mRNA levels were
significantly higher in the CA3 polymorphic layer in
patients with schizophrenia compared to controls (Figures
4 and 5; t¼ 3.06, df1,16, p¼ 0.0075). Since correlations were
seen between GCP II mRNA levels and pH, an ANOVA with
pH as the covariate was performed between GCP II levels in
CA3 polymorphic layer and diagnosis. A significant increase
in patients with schizophrenia was also found when pH was
covaried (F¼ 9.88, df¼ 1,15, p¼ 0.0067). Levels of GCP II
mRNA in the CA3 polymorphic layer were 197% of normal
controls while in every other region analyzed (including the
dentate gyrus, CA4, CA1, subiculum and entorhinal cortex),
GCP II mRNA levels were between 73 and 119% of control
levels (Figure 5) but did not reach statistical significance (all
t between �1.26 and 0.67, all p40.22).
We also did post hoc studies to examine further the

significant main effect of brain area. Of all the regions
investigated, the polymorphic layers of CA1 and CA3 and
the superficial layer of the subiculum expressed the highest
levels of GCP II mRNA. There was no difference in GCP II
mRNA between these regions. However, the entorhinal
cortex expressed significantly lower GCP II mRNA levels
compared to these three regions (p¼ 0.007–0.04). There
were no significant differences in GCP II mRNA levels
between neuron-dense regions in the mesial temporal lobe,
namely between CA4, pyramidal layers of CA1 and CA3,
and the deep subiculum or ERC gray matter.

DISCUSSION

Normal Distribution of GCP II

In this study, we have characterized the distribution pattern
of GCP II mRNA in two cortical areas, DLPFC and ERC, and

Figure 1 Autoradiographs (a, b), bright field (c), and dark field (d)
photomicrographs of tissue sections from DLPFC of normal control subject
(a) and monkey (b–d) following in situ hybridization with cDNA probes for
GCP II showing glial localization of GCP II mRNA (arrows).

Figure 2 Autoradiographs (a, b), bright field photomicrographs (c, d),
and dark field (e,f) of tissue sections from midbody level of the
hippocampus from a normal control subject (a,c,e) and monkey (b,d,f)
following in situ hybridization with cDNA probes for GCP II showing its
localization to glia (arrows).
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in subregions of the hippocampus. In all brain areas
examined, expression of GCP II mRNA occurs primarily
over glial cells, presumably astrocytes, while both pyramidal
and nonpyramidal neurons are devoid of any message.
These findings are consistent with reports in the rodent
where GCP II mRNA colocalizes with the astrocytic marker,
GFAP, and with Schwann cells but not neurons (Luthi-
Carter et al, 1998a, b; Berger et al, 1999). Additionally, GCP
II immunoreactivity in the rat hippocampus was enriched in
synaptic-rich neuropil, while no intracellular staining was
detected in pyramidal cells or their dendrites (Slusher et al,
1992). Collectively, these data suggest that GCP II is

expressed by astrocytes. Astrocytic endfeet wrap around
neuronal synapses (Harris and Rosenberg, 1993), placing
GCP II at a location where it can perform its role in cleaving
NAAG. Immunohistochemical human studies have revealed
intense NAAG-like immunoreactivity (NAAG-LI) in pyr-
amidal neurons and interneurons in the CA1–CA4 regions
(Passani et al, 1997), suggesting that NAAG, a peptide that
meets criteria for a neurotransmitter, may be released at
pyramidal and interneuron terminals. This released NAAG
may be metabolized into NAA and glutamate by the glial-
derived GCP II. Indeed, glia are known to play instrumental
roles in the metabolism and reuptake of many synaptically
released neurotransmitters.

GCP II in Schizophrenia

Decreased GCP II activity in the DLPFC and hippocampus
has been reported in schizophrenic subjects (Tsai et al,
1995). However, we did not find any difference in GCP II
mRNA levels in the DLPFC between normal controls and
schizophrenic subjects. This suggests that the decreased
GCP II activity may not be due to decreased expression of
the GCP II transcript. Contrary to our initial hypothesis, we
found a nearly two-fold increase (197%) in GCP II mRNA
expression in the CA3 polymorphic layer in patients with
schizophrenia.
The increase in GCP II mRNA levels is seen only in the

CA3 polymorphic layer. The CA3 is a region selectively
implicated as a specific site of pathology in schizophrenia in
several studies. These have included reports of decreased
AMPA and KA receptor subunits (Eastwood and Harrison,
1995a; Porter et al, 1997), decreased NMDA receptor
binding (Dean et al, 1999), decreased excitatory amino-
acid transporter 3 (EAAT3) mRNA (Bachus et al, 1996), and
reduced levels of synaptophysin (Eastwood et al, 1995b,
1999; Webster et al, 2001). It is interesting to note that these
findings are observed in the CA3 region, while the adjacent
CA1 is devoid of these neuropathological changes, suggest-
ing a selective vulnerability of the CA3 region.
The CA3 polymorphic layer is comprised of basal

dendrites from pyramidal neurons, interneurons, and glia
(Amaral and Insausti, 1990; McBain and Fisahn, 2001).
Principal axons of the CA3 pyramidal neurons give rise to
primary branches, many of which remain in the poly-
morphic layer and arborize extensively (Li et al, 1994). It is
estimated that 42–51% of the total dendritic length of a CA3
pyramidal neuron in the rat is located in the polymorphic
layer (Ishizuka et al, 1995), and that the majority of bouton-
laden collaterals are found in the polymorphic layer (64% in
the study by Sik et al, 1993). Within this layer there are
three types of interneurons (oriens-lacunosum-moleculare
(O-LM) interneuron, basket cells, and bistratified cells) that
show domain-specific innervation of the pyramidal neuron.
For example, O-LM interneurons project to distal dendrites
of pyramidal neurons, while basket cells project to the
pyramidal neuron soma and proximal dendrites (reviewed
in McBain and Fisahn, 2001). The majority of contacts made
between the CA3 pyramidal neurons and GABAergic
neurons are in the polymorphic layer (63% in the study
by Sik et al, 1993). Synapses in the CA3 region at which
NAAG may modulate neurotransmission include those
between CA3 neurons, between GABAergic neurons, and

Figure 4 Scatterplot showing distribution of film-based measurements
of GCP II message in the CA3 polymorphic layer in patients with
schizophrenia and normal controls.
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between the CA3 neuron and GABAergic neuron (Figure 6).
We can speculate that alterations in GCP II mRNA may lead
to specific changes in GCP II activity and to very localized
changes in NAAG and NAA concentrations. Altered NAAG
levels at synapses in the CA3 polymorphic layer could result
in the disruption of the recurrent inhibitory feedback/feed
forward function that would impair the ability of the CA3
field, as a whole, in modifying incoming information and
transferring the modified message to the CA1 field.
The reasons for the discrepancy between the present

findings with quantitative in situ hybridization for GCP II
mRNA and those of the previous study in which GCP II
activity was measured in postmortem tissue is unclear. It is
possible that the increase in GCP II mRNA levels may reflect
a compensatory response to normalize low GCP II enzyme
activity. Further studies to quantify protein levels of GCP II
in the CA3 polymorphic region may help address this issue.
Alternatively, the difference between the previous and this
study may reflect heterogeneity in the etiology of schizo-
phrenia. In the earlier study showing decreased GCP II
enzyme activity in schizophrenia, only 40% of subjects
exhibited marked reductions in enzyme activity. Thus, only
a subgroup of patients with schizophrenia may suffer from a
reduction of GCP II activity. A third explanation for the
difference may be the heterogeneity in the response to
medications among patients in the two studies. Recent
preclinical research reveals that both dissociative anes-
thetics such as phencyclidine and the antipsychotic,
haloperidol, increase expression of GCP II as measured by
quantitative Western blots in a regionally selective manner
(Flores and Coyle, in press). Although we did not find any
correlation between antipsychotic medication exposure and
GCP II mRNA levels in this study, it is possible that subtle
differences in drug exposure might also account for the
differences between the two studies.
In summary, we have found that GCP II mRNA is

expressed prominently by glia, probably astrocytes. GCP II

gene expression is significantly different in the polymorphic
layer of CA3 in schizophrenia, the CA3 region being one
that has repeatedly been implicated in the pathophysiology
of schizophrenia. Our results further support the finding
that hydrolysis of NAAG is disrupted in the hippocampus of
patients with schizophrenia.

MATERIALS AND METHODS

Brain Collection

Post-mortem brains were obtained from the Office of
the Chief Medical Examiner in Washington, DC. Coronal
slabs of the entire rostral-caudal extent of a hemisected
brain (1–1.5 cm thick) were fresh frozen at the time of
autopsy in a 50 : 50 mixture of isopentane and dry ice as
previously described (Kleinmn et al, 1995). The coronal
slabs were bagged and stored at �801C until further
dissection could be conducted. The DLPFC, located along
the middle one-third of the middle frontal gyrus, was
trimmed while frozen into a wedge-shaped block along the
superior frontal sulcus/middle frontal gyrus of all cases.
Brodmann’s area 46 (BA 46) of the DLPFC was identified
through Nissl staining according to defined cytoarchitec-
tural criteria (Rajkowska and Goldman-Rakic, 1995). Blocks
(2–3) of the rostral mesial temporal lobe were sectioned
from the amygdala through the body of the hippocampus;
sections were stained and anatomically matched at the
rostral midbody level of the hippocampus (Rosene and
van Hoesen, 1987). The cryostat sections (14m thick) from
both regions were mounted on gelatin-subbed slides and
stored at �801C.
Tissue from Rhesus macaque monkeys was collected from

normal adults according to NIH guidelines. Animals were
perfused with normal saline under ketamine anesthesia.
After removal of the brain from the skull, coronal slabs of
brain were serially blocked in B1 cm increments, frozen in
a 50 : 50 dry ice-isopentane slurry and stored at �801C.
Sections were cut by cryostat (14 mm) in the coronal plane,
collected on subbed slides and stored at �801C. Sections
from the monkey brains containing the upper and lower
banks of the principal sulcus (primate DLPFC, Area 46)
and anterior hippocampus were used to compare regional
and cellular expression patterns of GCP II in monkeys and
humans (Paxinos et al, 2000).
For the human studies, cohort 1 was used to perform the

analysis of GCP II mRNA in the DLPFC, while cohort 2 was
used in a separate experiment to examine the GCP II mRNA
expression in the hippocampus. Most subjects were
included in both cohorts (Table 1). Cohort 1 included
post-mortem brains from 29 individuals ranging in age
from 18 to 83 years, while brains of 21 individuals ranging
in age from 23 to 81 years were used in cohort 2. Each
cohort consisted of two groups, patients with schizophrenia
and normal controls. Cases were screened by police and/or
by telephone interviews of family members for a history of
medical and/or psychiatric illnesses including substance
abuse. The human brains used were free of neuropatho-
logical changes as determined by gross and microscopic
examination. Bielschowsky’s silver stain was performed on
multiple cortical areas to exclude neuritic pathology.
Diagnostic groups within each cohort were matched as

Figure 6 Schematic representation of synapses made between
pyramidal neurons and interneurons in the polymorphic layer of CA3 in
the hippocampus. The CA3 polymorphic layer is comprised of basal
dendrites from pyramidal neurons, interneurons and glia. Principal axons of
the CA3 pyramidal neurons give rise to primary branches, many of which
remain in the polymorphic layer and arborize extensively. The majority of
contacts made between the CA3 pyramidal neurons and GABAergic
neurons are in the polymorphic layer.
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closely as possible for race, gender, age, pH, and post-
mortem interval (PMI).

pH Determination

In each case, a frozen section of lateral cerebellum was
pulverized over dry ice and 500mg of the tissue was
weighed. The sample was homogenized for 15 s in 5ml of
dH2O using a 7mm diameter generator probe with a
processing range from 0.25 to 10ml (Omni International,
Gainesville, VA) attached to a handheld tissue homogenizer
(model Omni TH, Omni International Inc., Gainesville, VA).
Tissue pH was measured on a model 370 PerpHeCT pH/ISE
meter (AT1 Orion Analytical Technology Inc., Boston, MA)
equipped with a PerpHeCT Ross glass electrode.

Riboprobe Design

The human GCP II cDNA that was provided from the
laboratory of Dr Joseph Coyle was isolated from human
LNCaP cell line (Luthi-Carter et al, 1998a, b). The cDNA is a
2.5 kb insert in the pcDNA3 plasmid (Invitrogen) between
the BamHI and XbaI sites. The antisense and sense
templates were linearized using HindIII and ApaI, respec-
tively. 35S-UTP-labeled riboprobes with specific activities
between 1.76� 109 and 2.39� 109 cpm/mg were synthesized
using an in vitro transcription kit (Riboprobe Systems,
Promega, Madison, WI) with SP6 polymerase and T7
polymerase to generate the antisense and sense riboprobes,
respectively.

In situ Hybridization

Two 14 mm sections per region per case were used in each in
situ hybridization experiment. Tissue sections were fixed,
acetylated, delipidated and dehydrated, then hybridized
with 35S-UTP-labeled riboprobes overnight at 551C as
previously described (Whitfield et al, 1990). Control
sections of PFC and hippocampus were hybridized with
radiolabeled sense strand in the same experiment and under
the same conditions. Following the in situ procedure, slides
were apposed to Kodak autoradiographic film (Biomax) for
3–4 weeks along with 14C standards (American Radiolabeled
Chemicals, Inc., St Louis, MO). Once the autoradiographic
films were developed, all the slides were dipped in
photographic emulsion (Kodak Emulsion NTB-2), dried
and subsequently developed in D-19 developer (Kodak)
after 12–24 weeks. To maximize the silver grain signal for
cellular analysis, additional slides of human hippocampus
and primate PFC and hippocampus were immediately
dipped in photographic emulsion after the in situ hybridi-
zation.

Image Analysis

Autoradiographic films were scanned using a Hewlett-
Packard Scanjet Plus flatbed at 300 dpi resolution. The
autoradiographic images were analyzed using the NIH
Image software version v.1.61. (Rasband, NIH). Quantifica-
tion of optical densities was performed blind to diagnosis in
the DLPFC and regions in the hippocampal formation
including the dentate gyrus, CA4, CA3, CA1, subiculum, and

entorhinal cortex. In the DLPFC and ERC, measurements
were taken from gray and white matter areas. For gray
matter, sample areas traversed the entire cortex; for the
white matter, samples were taken from the subcortical
region. Within the Ammon’s horn, areas were sampled from
the region of highest signal intensity, the polymorphic layer
(comprised of the stratum oriens and alveus), and the
region of lowest signal intensity, the pyramidal layer
(Figure 7). In the dentate gyrus, samples were taken from
regions of highest signal that corresponded to the molecular
layer. A 14C standard curve was plotted for each cohort in
order to calculate mCi/g of GCP II mRNA measured in each
sample area. A total of 10 areas of interest were sampled
from each of two slides available for each case. An average
was obtained from the two slides for each area of interest. In
four cases, it was not possible to sample every region due to
inadvertent damage while processing the tissue.

Statistical Analysis

The demographic variables pH, PMI, and age were
compared between cohorts using t-tests. Correlation with
average GCP II mRNA levels in areas sampled with the pH,
PMI, age, and lifetime exposure to antipsychotic medication
were run with a Spearman Rank Order correlation. The
effect of diagnosis on GCP II mRNA levels in specific
regions was analyzed using a mixed model ANOVA with
diagnosis as the between group factor and brain area as the
within group factor. Significant findings were further
analyzed using post hoc t-tests. GCP II mRNA values
outside two SDs away from the mean for each area were
considered outliers and were not included in the statistical
analyses.
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Figure 7 Schematic diagram illustrating regions where measurements
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