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We previously showed that a methanolic extract of St John’s wort (SJW) (Hypericum) and hypericin, one of its active constituents, both

have delayed regulation of genes that are involved in the control of the hypothalamic–pituitary–adrenal (HPA) axis. Hyperforin, another

constituent of SJW, is active in vitro and has been proposed to be the active constituent for therapeutic efficacy in depression. We

therefore examined if hyperforin has delayed effects on HPA axis control centers similar to those of Hypericum and hypericin. We used in

situ hybridization histochemistry to examine in rats the effects of short-term (2 weeks) and long-term (8 weeks) oral administration of

two hyperforin preparations, fluoxetine (positive control), and haloperidol (negative control) on the expression of genes involved in the

regulation of the HPA axis. Fluoxetine (10mg/kg) given daily for 8 weeks, but not 2 weeks, significantly decreased levels of corticotropin-

releasing hormone (CRH) mRNA by 22% in the paraventricular nucleus (PVN) of the hypothalamus and tyrosine hydroxylase (TH)

mRNA by 23% in the locus coeruleus. Fluoxetine increased levels of mineralocorticoid (MR) (17%), glucocorticoid (GR) (18%), and 5-

HT1A receptor (21%) mRNAs in the hippocampus at 8, but not 2, weeks. Comparable to haloperidol (1mg/kg), neither the hyperforin-

rich CO2 extract (27mg/kg) nor hyperforin-trimethoxybenzoate (8mg/kg) altered mRNA levels in brain structures relevant for HPA axis

control at either time point. These data suggest that hyperforin and hyperforin derivatives are not involved in the regulation of genes that

control HPA axis function.
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INTRODUCTION

Herbal extracts of Hypericum perforatum L. (St John’s wort,
SJW) are now successfully competing for status as a
standard antidepressant therapy. Owing to this, great effort
has been devoted to identifying the active antidepressant
compounds. From a phytochemical point of view, SJW is
one of the best-investigated medicinal plants. A series of
bioactive compounds has been detected in the crude
material, namely phenylpropanes, flavonol derivatives,
biflavones, proanthocyanidines, xanthones, phlorogluci-
nols, some amino acids, naphthodianthrones, and essential
oil constituents (for a review, see Bombardelli and
Morazzoni, 1995; Nahrstedt and Butterweck, 1997; Nahr-
stedt, 2000). Although SJW has been subjected to extensive
scientific studies in the last decade, there are still many

open questions about the pharmacology and the mechanism
of action. In fact, the active constituents are not fully
known. The pharmacological activity of SJW extracts has
recently been reviewed (Butterweck, 2003; Greeson et al,
2001; Nathan, 1999). Reports about the antidepressant
activity of SJW extracts and their constituents both in vivo
and in vitro have been published (Baureithel et al, 1997;
Butterweck et al, 1997, 1998, 2000, 2001a, b, 2002; Calapai
et al, 1999; Chatterjee et al, 1996, 1998a, b; Di Matteo et al,
2000; Franklin and Cowen, 2001; Gobbi et al, 1999, 2001;
Müller et al, 1997, 1998, 2001; Simmen et al, 1999, 2001;
Singer et al, 1999; Wonnemann et al, 2001).
A characteristic feature common to both tricyclic

antidepressants and SJW is the delay of 10–14 days or
more before the therapeutic effect becomes evident, and the
efficacy continues to increase in the following weeks. The
long delay may reflect long-term central nervous system
biological adaptations occurring during the daily adminis-
trations. A common biological alteration in patients with
major depression is the activation of the hypothalamic–
pituitary–adrenal (HPA) axis, manifested as hypersecretion
of adrenocorticotropic hormone (ACTH) and cortisol and
an abnormal cortisol response to dexamethasone and
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corticotropin-releasing hormone (CRH) administration
(Gold et al, 1988; Holsboer and Barden, 1996; Holsboer
et al, 1985; Raadsher et al, 1994). Correspondingly, the
hyperactivity of the HPA axis in depressed patients was
corrected during clinically effective therapy with antide-
pressant drugs (Barden et al, 1995; Holsboer et al, 1985).
In an animal study designed to examine the association

between long-term antidepressant administration and the
possibly delayed alteration in HPA axis activity, CRH
mRNA levels in the hypothalamic paraventricular nucleus
(PVN) of rats were shown to be decreased following long-
term (8 weeks) but not short-term (2 weeks) treatment with
imipramine, the prototypic tricyclic antidepressant (Brady
et al, 1991). The same results were found with several other
antidepressant drugs selected for their distinctly different
primary pharmacological actions (Brady et al, 1992). Based
on these data, we studied the effects of short-term (2 weeks)
and long-term (8 weeks) administration of a methanolic
SJW extract, hypericin and imipramine on the expression of
genes that may be involved in the regulation of the HPA axis
(Butterweck et al, 2001b). Our data showed that imipra-
mine, SJW extract, and hypericin given daily for 8 weeks,
but not for 2 weeks, significantly decreased levels of CRH
mRNA in the PVN. Comparable to imipramine, the SJW
extract and hypericin reduced plasma ACTH and corticos-
terone levels after 2 weeks of daily treatment. In line with
previous findings (Brady et al, 1991; Nestler et al, 1990), we
found that long-term treatment with imipramine signifi-
cantly decreased TH mRNA levels in the locus coeruleus,
whereas SJW extract and hypericin had no effect on TH
message levels. Furthermore, long-term treatment with all
three agents significantly decreased 5-HT1A receptor mRNA
expression in CA1 of the hippocampus. As the HPA axis
effects could also be demonstrated with pure hypericin, it
appears that the naphthodianthrone is a possible major
active principle that may contribute to the beneficial effect
of SJW extract after long-term oral dosing. The results
obtained with hypericin could therefore be a starting point
for approaches to design CNS-active molecules with a novel
mode of action.
However, besides hypericin, pharmacological research on

SJW has focused on either lipophilic extracts obtained with
hypercritical CO2 that were devoid of hypericins and
flavonoids, but enriched with hyperforin (Bhattacharya
et al, 1998; Chatterjee et al, 1998b; Dimpfel et al, 1998;
Franklin and Cowen, 2001; Gobbi et al, 2001; Simmen et al,
1999), or hydroalcoholic extracts that were standardized on
a certain amount of hyperforin (Chatterjee et al, 1996,
1998b; Dimpfel et al, 1998; Franklin and Cowen, 2001;
Gobbi et al, 2001; Simmen et al, 1999, 2001; Wonnemann
et al, 2001). The phloroglucinol derivative hyperforin has
recently become a molecule of increasing interest. Studies
have demonstrated significant effects of hyperforin on
various serotonergic, noradrenergic, dopaminergic, choli-
nergic, and opioid system activities in vitro (Chatterjee et al,
1998a; Holcomb et al, 1982; Müller et al, 1998, 2001; Neary
et al, 2001; Simmen et al, 1999; Singer et al, 1999;
Wonnemann et al, 2001). As the in vitro data have been
used to argue that hyperforin is the major active principle of
SJW extract, we determined in the present study whether it
is active in vivo in a model of therapeutic efficacy. Thus, we
gave daily oral administration of two preparations of

hyperforin to rats in the short-term/long-term administra-
tion paradigm to determine if hyperforin had effects on the
levels of the above-mentioned mRNAs in a manner similar
to that of the methanolic SJW extract and hypericin. The
effects were compared to those of the selective serotonin
reuptake inhibitor (SSRI) fluoxetine. Fluoxetine was chosen
as a reference control because it was shown in several
studies that similar to the SSRI, hyperforin inhibited
serotonin reuptake in in vitro experiments (Chatterjee
et al, 1998a; Gobbi et al, 1999; Jensen et al, 2001; Müller et al,
1998; Neary et al, 2001; Simmen et al, 1999; Wonnemann
et al, 2001).

MATERIALS AND METHODS

Animals

Male CD rats (150–180 g, Charles River WIGA, Sulzfeld,
Germany) were single housed in a 12 h light/dark cycle, with
lights off at 1900, at a constant temperature of 257 11C,
and free access to food (Altromin 1324, Altromin Lage,
Germany) and tap water. Rats were randomly assigned to
the various experimental groups (n¼ 8/group) and weighed
daily. The experimental procedures used in this work were
officially approved by the Regierungspräsident, Münster (A
92/99). Animals were killed between 0900 and 1100; the last
drug administration was the day before between 1600 and
1700. Brains were removed, frozen by immersion in 2-
methyl butane at �301C, and stored at �701C prior to
sectioning. Trunk blood was collected on ice-chilled EDTA-
coated (10ml) tubes containing 500 kIU aprotinin/ml and
centrifuged. Plasma was frozen at �701C.

Chronic Antidepressant Treatment

Fluoxetine hydrochloride was generously provided by Hexal
(Holzkirchen, Germany), haloperidol-HCl was purchased
from Sigma (Deisenhofen, Germany). A lipophilic SJW
extract obtained with hypercritical CO2 (containing about
23.7% hyperforin and 6.2% adhyperforin) and hyperforin-
trimethoxybenzoate (TMB) were supplied by Indena S.p.A.
(Milan, Italy).
All drugs were suspended in deionized water, and the

solutions were emulsified with Tween-80 to a final
concentration of 2% (Pälvimäki et al, 1994). Tween was
also added to the deionized water received by the control
groups (¼ vehicle). Fluoxetine (10mg/kg), haloperidol
(1mg/kg), hyperforin-TMB (8mg/kg), and the CO2 extract
(27mg/kg) were dissolved with vehicle. Tween-80 was used
as a solubilizer because the CO2 extract and hyperforin-
TMB are barely soluble in aqueous solutions. The final
application volume of each preparation was 10ml/kg body
weight. Drug solutions were prepared fresh daily prior to
use. In all experiments, substances were administered orally
using the gavage technique. The oral administration route
had to be chosen because (1) both the CO2 extract, and
hyperforin-TMB are barely soluble in aqueous solvents and
thus must be administered as an emulsion; (2) for chronic
application, i.p. injections are contraindicated (Wolfensohn
and Lloyd, 1994); and (3) gavageFif performed proper-
lyFis less stressful for animals than i.p. injection
(Wolfensohn and Lloyd, 1994). For consistency of the
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method, fluoxetine and haloperidol were also given by gavage.
Stock compounds were kept in light-tight containers at
�201C under argon atmosphere. The CO2 extract (27mg/kg)
and the hyperforin-TMB (8mg/kg) dosages were chosen
because of their demonstrated efficacy in the forced swim-
ming test. In preliminary experiments, the immobility times
(seconds) at the optimized doses listed above were: control
(2137 15); fluoxetine (947 14, Po0.05 vs control); CO2

extract (1247 11, Po0.05 vs control); and hyperforin-TMB
(1267 14, Po0.05 vs control). The application of hyperforin
as an ester appeared to be necessary because hyperforin is
extremely sensitive to light and oxidation processes and is
decomposed in aqueous solutions. In pharmacokinetic
studies, the release of hyperforin from the ester was
demonstrated (P Morrazzoni, personal communication).

Measurement of Corticosterone and ACTH

Radioimmunoassay (RIA) of corticosterone was performed
using [125I]corticosterone, antiserum, and standard solution
in a kit from ICN Biomedical (Costa Mesa, CA, USA). The
assay was adapted to rat serum conditions. Precipitation
was performed using a second antibody solid phase. ACTH
was measured using a kit from Diagnostic Systems
Laboratories (Sinzheim, Germany). Both assays were
performed according to the manufacturer’s instructions.
The inter- and intra-assay coefficients of variance for ACTH
were 10.6 and 6.9%, respectively, with a detection limit of
10 pg/ml. For corticosterone, the inter- and intra-assay
coefficients of variance were 7.2 and 4.4%, with a detection
limit of 15 ng/ml.

In Situ Hybridization Histochemistry

Guided by Nissl-stained sections collected during the
cutting and by the atlas of Paxinos and Watson (1998),
coronal frozen sections (15 mm-thick) were collected at the
levels of the midportion of the parvocellular region of the
PVN where the magnocellular nucleus is largest (�1.8mm);
dorsal hippocampus (�3.3mm), pituitary, and locus
coeruleus (�9.7mm). Sections were thaw-mounted onto
gelatin-coated slides, dried, and stored at �401C prior to
processing for in situ hybridization histochemistry.
The in situ hybridization histochemistry procedures were

performed as described previously for ribonucleotide
(cRNA) probes (Brady et al, 1991). First, tissue sections
were processed by fixation with 4% formaldehyde solution,
acetylation with 0.25% acetic anhydride in 0.1M triethano-
lamine-HCl, pH 8.0 solution, dehydration with ethanol, and
delipidation with chloroform. Second, the antisense probes
were transcribed from linearized plasmids using the
Riboprobe System (Promega Biotech, Madison, WI) with
35S-UTP (specific activity41000Ci/mmol; New England
Nuclear, Boston, MA) and T7, T3, or SP6 RNA polymerase.
The cDNA probes were: a 760 bp fragment of rat CRH (a gift
from Dr James Herman, University of Kentucky, Lexington,
KY), 923 bp of mouse pro-opiomelanocortin (POMC) (a gift
from Dr James Douglass, Vollum Institute, Portland, OR),
384 bp of rat tyrosine hydroxylase (TH) (a gift from Dr
Barry Kosofsky, Harvard Medical School, Boston, MA),
900 bp of the rat serotonin 5-HT1A receptor gene (a gift
from Dr Paul Albert, University of Ottawa, Ontario,

Canada), bases 81–528 of the rat glucocorticoid receptor
(GR) (gifts from Dr Keith Yamamoto, University of
California, San Francisco, CA), and 513 bases encoding
the carboxy-terminal 25 amino acids of the rat miner-
alocorticoid receptor (MR) (gifts from Dr Jeffrey Arriza,
Salk Institute, La Jolla, CA).
The radiolabeled probes were diluted in a riboprobe

hybridization buffer and applied to brain sections (approxi-
mately 500 000 cpm/section). After overnight incubation at
551C in a humidified chamber, slides containing brain
sections were washed first in 20 mg/ml RNase solution and
then 1 h each in 2� SSC (501C) and 0.2� SSC (55 and 601C)
solutions to reduce nonspecific binding of the probe. The
slides were then dehydrated with ethanol and air-dried for
autoradiography.
Slides and 14C plastic standards containing known

amounts of radioactivity (American Radiochemicals, St
Louis, MO) were placed in X-ray cassettes, apposed to film
(BioMax MR, Kodak, Rochester, NY) for periods ranging
from 1 to 72 h, and developed in an automatic processor
(X-OMAT, Kodak).

Data Analysis and Presentation

Autoradiographic images were digitized with a solid-state
camera (CCD-72, Dage-MTI) and a Macintosh computer
using NIH Image software (Wayne Rasband, National
Institute of Mental Health). Transmittance measurements
were converted into dpm/mg plastic using the calibration
curve (Rodbard equation) generated from the standards.
Brain structures were identified according to the atlas of
Paxinos and Watson. Light transmittance through the film
at PVN (CRH in the parvocellular division), hippocampus
(5-HT1A, MR, GR), anterior and intermediate lobes of
pituitary (POMC), and locus coeruleus (TH) was measured
by outlining the structure with the mouse cursor. The
average value for each animal in experimental or control
groups (based on four measurements per animal) was used
to calculate group means (n¼ 5–8 per group). Except for
the anterior pituitary, a density-slice function was applied
to each structure; in the hippocampus, it was used to select
and measure transmittance confined to the cellular layers of
the CA fields and dentate gyrus. Mouse cursor control was
used to outline the selected structure. The average value for
each animal in experimental or control groups (based on
four measurements per animal) was used to calculate group
means (n¼ 8 per group).
One-way ANOVAs (drug treatment) were used to

compare specific mRNA levels in control vs treated groups.
The Student–Newman–Keuls test was used for post hoc
comparisons of mRNA levels in each hippocampal region. A
criterion level of Po0.05 was used to determine signifi-
cance.

RESULTS

Effects of Daily Antidepressant Treatment on CRH
mRNA Levels in the PVN of the Hypothalamus and on
POMC mRNA Levels in the Pituitary

CRH mRNA levels in the PVN were not significantly
changed at 2 weeks (short-term administration), but were
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significantly decreased at 8 weeks (long-term administra-
tion) after treatment with fluoxetine (21%) (Figure 1). No
changes in mRNA expression of CRH in the PVN were
observed for haloperidol, hyperforin-TMB, or the lipophilic
CO2 extract at either time point. No treatment effects on the
expression of POMC were observed in the anterior lobe of
the pituitary (Table 1).

Effects on MR, GR, and 5-HT1A mRNA Levels in the
Hippocampus

After 2 weeks of daily treatment, no significant changes in
MR, GR, and 5-HT1A receptor mRNA levels were found for
any of the drugs (Table 1). Long-term treatment with
fluoxetine significantly increased MR (18%) and GR (19%)
receptor mRNA expression in the dentate gyrus of the
hippocampus and 5-HT1A receptor mRNA expression by 21

and 22% in the hippocampal fields CA1 and CA3 relative to
control (Table 1). No changes in mRNA expression of MR,
GR, and 5-HT1A in the hippocampus were observed for
haloperidol, hyperforin-TMB, or the lipophilic CO2 extract
at either time point.

Effects on TH mRNA Levels in the Locus Coeruleus

No changes in TH mRNA levels were evident after 2 weeks
for any treatment (Figure 2). After 8 weeks of daily
fluoxetine administration, TH gene expression levels were
decreased by 22% (Po0.05). Haloperidol, hyperforin-TMB,
or the lipophilic CO2 extract did not alter TH mRNA levels.

Effects on Hormone Levels, Body Weight, and Adrenal
Gland Weight

After 2 weeks of daily treatment, fluoxetine significantly
increased plasma ACTH (46%, Po0.001) and corticosterone
(417%, Po0.001) levels (Figure 3a, b). Haloperidol, hyper-
forin-TMB, or the lipophilic CO2 extract did not alter
plasma hormone levels. No changes in hormone levels were
observed after 8 weeks. Adrenal gland weights were not
significantly altered by 2 or 8 weeks of chronic antidepres-
sant treatment. Body weight was significantly decreased by
fluoxetine (B10%, Po0.05) after 2 and 8 weeks and by
haloperidol after 2 weeks (13% Po0.05), but not after 8
weeks (Table 2).

DISCUSSION

Previous work validated the long-term drug administration
protocol applied to unstressed eucortisolemic rats as an
appropriate model for assessing the therapeutic efficacy of
antidepressant drugs (Brady et al, 1991, 1992). The changes
in mRNA expression levels of genes involved in the HPA
axis control served to correct imbalances created in these

Table 1 Expression of mRNAs in Rat Brain after Short-Term and Long-Term Antidepressant Treatment

Control Fluoxetine Hyperforin-TMB CO2 extract Haloperidol

Brain region/mRNA 2 weeks 8 weeks 2 weeks 8 weeks 2 weeks 8 weeks 2 weeks 8 weeks 2 weeks 8 weeks

MR
CA1 1007 4 1007 3 977 2 1037 3 1037 4 1007 2 947 3 997 4 997 2 1067 3
CA3 1007 4 1007 3 977 2 1017 3 1017 4 997 2 927 4 987 2 977 2 1057 2
DG 1007 4 1007 2 1007 4 1187 2* 1007 5 1127 2 977 5 1107 3 1007 3 1107 2

GR
CA1 1007 5 1007 2 1017 3 1087 4 104 7 3 1047 4 967 3 967 3 977 5 997 3
CA3 1007 3 1007 1 1007 2 1087 3 1007 2 1037 2 977 2 977 1 997 4 1087 5
DG 1007 4 1007 2 997 3 1197 2* 1017 5 1047 5 977 3 1017 2 947 4 1047 3

5-HT1A
CA1 1007 4 1007 3 1027 7 1217 3* 1017 5 1077 4 1047 4 1057 5 1087 4 1027 3
CA3 1007 5 1007 3 987 7 1227 3* 967 5 1027 5 987 6 967 4 1037 6 1117 6
DG 1007 4 1007 5 957 6 1067 6 987 5 1027 5 947 4 967 5 1007 3 1087 4

POMC
Ant. pituitary 1007 8 1007 6 867 14 1027 8 987 3 997 8 947 10 997 7 1077 7 997 13

Values represent mean7 SEM based on the average of four sections for each brain region per animal (n¼ 8 animals per group) and are expressed as percentage of
the respective 2- or 8-week controls. Values significantly different from the respective 2- or 8-week control animals are expressed as *Po0.05 and **Po0.01,
Student–Newman–Keuls post hoc test.

Figure 1 CRH mRNA expression in the PVN after 2 and 8 weeks of
daily administration.
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neurochemical systems by chronic immobilization stress
(Butterweck et al, 2001b). Brady et al (1991, 1992) showed
that long-term treatment with imipramine, fluoxetine,
idazoxan, and phenelzine reduces HPA axis activity and
regulates gene transcription levels in relevant structures

with delayed onset, resembling the delayed onset of
therapeutic efficacy of these drugs when given to patients
for treatment of depression. In the current study, using in
situ hybridization histochemistry, we have examined the
effect of chronic administration of the SSRI fluoxetine, the
antipsychotic drug haloperidol, a lipophilic SJW extract
prepared with supercritical CO2, and hyperforin-TMB on
these same genes. Long-term (8 weeks), but not short-term
(2 weeks), treatment with fluoxetine resulted in a marked
decrease in CRH mRNA levels in the PVN and TH mRNA
levels in the LC, and it produced an increase in
hippocampal levels of MR, GR, and 5-HT1A mRNA. In
contrast, the negative control haloperidol (1mg/kg), the
hyperforin-rich CO2 extract (27mg/kg), and hyperforin-
TMB (8mg/kg) did not alter levels of gene transcription at
either time point. These data suggest that hyperforin and
hyperforin derivatives are not involved in the regulation of
genes that control HPA axis function in a therapeutic
administration paradigm.
We have previously reported that long-term administra-

tion of imipramine (15mg/kg, p.o.), a methanolic SJW
extract (500mg/kg, p.o.), or hypericin (0.2mg/kg, p.o.) all
decreased CRH mRNA levels in the PVN (Butterweck et al,
2001b). The decrease in CRH mRNA levels in the PVN was
accompanied by a decrease in POMC levels in the anterior
lobe of the pituitary and in the plasma levels of ACTH and
corticosterone. In light of the findings that CRH appears to
be hypersecreted in depression, we suggested that the
decrease in hypothalamic CRH expression induced by SJW
extract and hypericin may be relevant to their therapeutic
efficacy. The replication of the imipramine- (Brady et al,
1991) and fluoxetine-induced (Brady et al, 1992) delayed
decreases in CRH mRNA levels in the PVN and the addition
of significant data based on administration of plant
substances (Butterweck et al, 2001b) further validate the
short-term/long-term treatment paradigm for the assess-
ment of efficacy of candidate antidepressant drugs. We
hypothesize that if a downregulation of CRH mRNA in the
PVN may be a common element relevant to the therapeutic
efficacy of antidepressant drugs, the lack of effect of
hyperforin and hyperforin derivatives on the regulation of
HPA axis genes suggests that these substances are not
necessarily involved in the beneficial effects of SJW after
oral dosing.
In the present study, only fluoxetine altered mRNA levels

of steroid hormone levels. In line with the finding of Brady
et al (1992), the SSRI increased MR and GR mRNA levels in
the hippocampus after 8 weeks, but not after 2 weeks, of
drug treatment, indicating that differential regulatory
mechanisms are operating to adjust limbic corticosteroid
receptor number during antidepressant treatment. Similar
antidepressant-induced increases of MR and GR mRNA
expression have been reported in several in vitro and in vivo

Figure 2 TH mRNA expression in the locus coeruleus after 2 and 8
weeks of daily administration.

Figure 3 ACTH (a) and corticosterone (b) levels in plasma after 2 and 8
weeks of daily treatment.

Table 2 Adrenal and Body Weights in Short- and Long-term Administration Groups

Control Fluoxetine Hyperforin-TMB CO2 extract Haloperidol

2 weeks 8 weeks 2 weeks 8 weeks 2 weeks 8 weeks 2 weeks 8 weeks 2 weeks 8 weeks

Adrenal gland weight (mg) 567 3 577 3 507 2 537 3 537 2 527 3 597 2 567 3 587 3 567 3
Body weight (g) 3887 8 4297 15 3597 9* 3867 14* 3757 11 3967 13 3927 10 4217 19 3887 11 3757 10*

Values are expressed as mean7 SEM (n¼ 8 per group). Initial body weights were 160–180 g. *Po0.05.
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studies (Budziszewska et al, 1994; Pepin et al, 1989; Pfeiffer
et al, 1991; Reul et al, 1993; Seckl and Fink, 1992). It has also
been shown that chronic administration of lithium, which is
known to augment clinical effects of medication in
depressed patients, as well as prolonged application of
electroconvulsive shock (ECS), regarded as a nondrug
therapy of depression, elevate GR mRNA levels or the
density of GR and MR in the rat hippocampus (Pfeiffer et al,
1991; Przegalinski et al, 1993). GR and MR biosynthesis
appears to be under control of central monoaminergic
systems (Maccari et al, 1990, 1992; Mitchell et al, 1990;
Weidenfeld and Feldmann, 1991). In vivo studies with
monoamine-depleting agents (eg reserpine) and neurotoxic
substances that specifically destroy serotonergic, noradre-
nergic, and/or dopaminergic nerve terminals have provided
evidence for a modulatory role of monoamines in brain
corticosteroid receptor regulation (Lowy, 1990; Seckl et al,
1990; Siegel et al, 1983; Weidenfeld et al, 1983). After
chronic fluoxetine treatment, in vivo microdialysis studies
have shown that extracellular levels of serotonin are
markedly elevated (Rutter et al, 1994). Thus, in the present
study, the increase in GR and MR mRNA levels after long-
term fluoxetine treatment may be connected with the
actions of the SSRI on serotonergic neurotransmission.
Apart from a role of the monoamines, fluoxetine-induced

changes in plasma levels of ACTH and corticosterone may
also be a factor contributing to the regulation of the
corticosteroid receptors. Support for a stimulatory role of
fluoxetine on the HPA axis has been provided by a number
of studies. For instance, acute administration of fluoxetine
to rats stimulates the secretion of pituitary ACTH and
adrenal corticosterone in a dose-dependent manner (Dinan,
1996; Li et al, 1993a, b). In the present study, ACTH as well
corticosterone levels were significantly increased after 2
weeks of daily fluoxetine treatment, and they were back to
baseline levels after 8 weeks. This result is in contrast to
other reports of decreased or baseline levels of ACTH and
corticosterone plasma levels after repeated treatment of rats
with fluoxetine (Brady et al, 1991, 1992; Lopez et al, 1998;
Raap et al, 1999). One reason for these discrepancies might
be the large variability in daily fluoxetine doses used in the
different studies. Many studies using fluoxetine in rats have
used doses of 10–30mg/kg/day (Gardier et al, 1994; Nestler
et al, 1990; Trouvin et al, 1993); others have used lower
doses of 2.5–5mg/kg/day (Brady et al, 1992; Nibuya et al,
1996). In these studies, the substance was given i.p. or
subcutaneously, whereas in the present study, 10mg/kg of
fluoxetine was given orally by gavage. However, the
antidepressant doses used in the present study were selected
from the doses shown in animal models (forced swim test)
to correlate with antidepressant activity.
In our study, POMC mRNA levels in the anterior pituitary

were slightly reduced after 2 weeks of fluoxetine treatment,
but this effect was not statistically significant. CRH mRNA
levels were significantly decreased after 8 weeks of daily
treatment with fluoxetine. These apparent discrepancies
between increased plasma ACTH and corticosterone levels
slightly reduced mRNA POMC levels after 2 weeks, and
reduced CRH mRNA levels after 8 weeks of fluoxetine
treatment might be explained by the fact that substances
like fluoxetine, which increase central 5-HT concentration,
may increase plasma ACTH and corticosterone levels

through mechanisms that are independent from serotoner-
gic innervation of CRH neurons in the PVN. In fact, it has
been reported that 5-HT causes a direct ACTH secretion
from anterior pituitary cells in vitro (Calogero et al, 1995).
On the other hand, corticosteroids have been shown to alter
several elements of serotonergic neurotransmission. The
removal of circulating corticosteroids by adrenalectomy
resulted in anatomically specific decreases in the indices of
5-HT metabolism (Chalmers et al, 1993; De Kloet et al, 1982;
Zhong and Ciaranello, 1995). It is therefore likely that the
increased ACTH and corticosterone levels observed in the
present study after 2 weeks of fluoxetine treatment do not
result from changes in HPA activity, but rather reflect a
direct effect on pituitary cells caused by increased levels of
serotonin.
As the hippocampus is also suggested to be a key

component in the mediation of depression (Duman et al,
1997), the expression level of 5-HT1A mRNA was measured
in this structure. Several studies provide evidence that the
activity and levels of 5-HT1A receptors are modulated by
glucocorticoid levels. It has been shown that removal of
circulating corticosteroids acts to induce 5-HT1A receptor
expression. Autoradiographic studies first identified in-
creased 5-HT1A receptor binding in the rat hippocampus
after adrenalectomy (Biegon et al, 1985). Subsequent
investigations have confirmed the sensitivity of 5-HT1A

receptors to circulating corticosteroid levels (Chalmers et al,
1993, 1994; Zhong and Ciaranello, 1995). However, the fact
that in the present study, plasma ACTH and corticosterone
levels were found to be elevated after 2 weeks whereas
hippocampal 5-HT1A mRNA was upregulated after 8 weeks
indicates that differential or delayed regulatory mechanisms
are operating to adjust limbic 5-HT1A receptor number
during fluoxetine treatment.
Long-term oral administration of fluoxetine was asso-

ciated with a decrease in mRNA expression in the LC,
whereas haloperidol (1mg/kg), the CO2 extract (27mg/kg),
and hyperforin-TMB (8mg/kg) had no effect on TH
message levels. Data from previous studies suggest that
the common action of antidepressants could be related to
an effect on the regulation of TH in the LC, but there is
controversy in the literature in this regard. Whereas Brady
et al (1992) report an upregulation of TH mRNA levels in
the LC after 8 weeks of fluoxetine treatment (5mg/kg, i.p.),
Nestler et al (1990) found decreased levels of TH after 2
weeks of fluoxetine administration (15mg/kg, i.p.). The
apparent downregulation of TH by fluoxetine is particularly
interesting and supports the view that the serotonergic
system exerts an influence on the functional state of
noradrenergic neurons (Valentino et al, 1990).
In summary, as a positive control, we replicated the

effects of long-term fluoxetine administration on gene
transcription in selected brain areas that are thought to be
involved in HPA axis control (Brady et al, 1992). In
contrast, a hyperforin-rich lipophilic CO2 extract as well as
hyperforin-TMB failed to affect gene transcription asso-
ciated with HPA axis control. Although some authors
emphasize hyperforin as the major active principle of SJW,
its efficacy could not be demonstrated in the present
paradigm. In the present study, hyperforin was used as
TMB, a hyperforin prodrug. The application of hyperforin
as an ester appeared to be necessary because hyperforin is
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extremely sensitive to light and oxidation processes and is
decomposed in aqueous solutions. In the present study, we
tested the pharmacological activity of hyperforin-TMB, a
new derivative synthesized with the aim of obtaining a more
stable compound. Although hyperforin-TMB was inactive in
the present study, it can be excluded that this effect is due to
lack of its bioavailability. The release of hyperforin from the
ester was demonstrated in pharmacokinetic studies.
Furthermore, the dosage used in the present study proved
to be active when tested in the forced swimming test (see
Materials and methods). However, recently Cervo et al
(2002) showed that hyperforinFused as a hyperforin-
dicyclohexylammonium saltFwas active in several beha-
vioral models, but that the ester as well as the free drug
could not be detected in the brain probably because of its
poor passage through the blood–brain barrier. The authors
speculate that the antidepressant-like effect of hyperforin
might be mediated by a still unknown metabolite of this
compound.
In our previous study, we showed that a methanolic SJW

extract as well as hypericin reduced measures of HPA axis
activity with delayed onset (after 8 weeks), indicating that
the delayed changes may be important for their therapeutic
efficacy. Based on our present study, we conclude that
hyperforin and hyperforin derivatives might belong to the
active compounds that contribute to the beneficial effects of
SJW after oral dosing, but that these lipophilic compounds
are not involved in the regulation of HPA axis control.
However, other mechanisms relevant to antidepressant
activity of these compounds are not excluded and need to
be investigated in further in vivo studies.
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