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The neurotoxic effects of methamphetamine (METH) have been characterized primarily from the study of high-dose binge regimens in

rodents. However, this drug administration paradigm does not include a potentially important feature of stimulant abuse in humans, that

is, the gradual escalation of stimulant doses that frequently occurs prior to high-dose exposure. We have argued that pretreatment with

escalating doses (EDs) might significantly alter the neurotoxic profile produced by a single high-dose binge. In the present study, we

tested this hypothesis by pretreating rats with saline or gradually increasing doses of METH (0.1–4.0mg/kg over 14 days), prior to an

acute METH binge (4� 6mg/kg at 2 h intervals). These animals, whose behavior was continuously monitored throughout drug

treatment, were then killed 3 days later for determination of caudate-putamen dopamine (DA) content, levels of [3H]WIN 35,428

binding to the DA transporter, and levels of [3H]dihydrotetrabenazine ([3H]DTBZ) binding to the vesicular monoamine transporter. ED

pretreatment markedly attenuated the stereotypy response, as well as the hyperthermia and indices of sympathetic activation associated

with the acute binge. In addition, ED pretreatment prevented the decline in [3H]WIN 35,428 binding, and significantly diminished the

decrease in DA levels, but did not affect the decrease in [3H]DTBZ binding associated with the acute binge. We suggest that further

study of the effects produced by a regimen which includes a gradual escalation of doses prior to high-dose METH binge exposure could

more accurately identify the neurochemical and behavioral changes relevant to those that occur as a consequence of high-dose METH

abuse in humans.
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INTRODUCTION

Amphetamine-induced psychosis is most commonly asso-
ciated with daily, multiple high-dose drug administrations,
and therefore, an understanding of the neurobiological
effects produced by this stimulant exposure pattern might
provide an insight into the pathophysiology of naturally
occurring psychosis (Angrist, 1994; Segal and Kuczenski,
1997a). In this regard, accumulating evidence suggests that
neurotoxic effects may result from this form of stimulant
abuse and therefore, such changes could contribute to the
frequently observed augmented sensitivity to the psychosis-
inducing effects of these drugs. Recently, the results of a
number of studies in humans, including both post-mortem

and neuroimaging indices of various regional brain
neurochemical processes, have indicated that pronounced
effects may persist long after cessation of drug administra-
tion, particularly in high-dose methamphetamine (METH)
abusers (Villemagne et al, 1998; McCann et al, 1998; Volkow
et al, 1999, 2001a; Sekine et al, 2001, 2002; Chang et al,
2002). As dopamine (DA) systems have been implicated in
many effects of stimulants, including psychosis, consider-
able interest has been focused on the impact of METH abuse
on various DA terminal markers. In fact, some evidence
showing long-term declines in the levels of the dopamine
transporter (DAT) have been interpreted as reflecting
permanent dysfunction in DA transmission in selective
DA pathways (McCann et al, 1998; Volkow et al, 1999;
Sekine et al, 2001).
However, multiple interpretations exist regarding the

nature of these neurochemical changes, that is, whether they
reflect compensatory alterations or neuronal damage, as
well as the degree to which they exhibit, at least, functional
recovery over time (Wilson et al, 1996; McCann et al, 1998;
Harvey et al, 2000; Guilarte, 2001; Davidson et al, 2001;
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Volkow et al, 2001b). In part, variations in persistence of
changes observed in METH abusers may stem from the
presence of numerous potentially confounding factors,
including concurrent abuse of other drugs such as alcohol
and/or marijuana, as well as the reliance on self-reports for
characterization of drug dose and usage pattern (Angrist,
1994; Gawin and Khalsa, 1996; Huber et al, 1997; Simon et al,
2000). Therefore, despite continuing technological advances
in detecting drug-induced changes in vivo, the relative
uncertainty regarding details known to influence stimulant
effects may significantly compromise the accurate inter-
pretation of results and likely contributes to the variability
in the findings reported in METH abusers.
To overcome many of these difficulties, various animal

models have been proposed using specific drug exposure
protocols. In addition to the ability to precisely control
dosing regimens, studies in animals allow for a significantly
greater range and accuracy in the neurochemical character-
ization of stimulant effects. Particularly with respect to
rodent models of METH abuse, an acute ‘binge’ regimen has
been most frequently used to study the consequences of
high-dose METH exposure. The high doses used (most
commonly in the range of 4–10mg/kg) are presumed to be
comparable to those achieved by many long-term METH
abusers (see, eg, Sonsalla and Heikkila, 1988; Hogan et al,
2000; Davidson et al, 2001). Multiple injections are
administered within a day, typically at 2-h intervals, to
simulate the prolonged elevation of drug associated with
binge-pattern administration in humans. Although several
variations in this procedure have been studied, most
researchers have reported a ‘neurotoxic’ profile which,
especially at the higher doses, includes regionally specific
damage to DA terminals as well as profound, although less
persistent, changes in other neurotransmitter systems
(Seiden and Ricaurte, 1987; Eisch et al, 1992; Axt et al,
1994; Bowyer and Holson, 1995; Pu and Vorhees, 1995; Cass,
1997; Fleckenstein et al, 2000; O’Callaghan and Miller,
2000). The mechanisms underlying these changes have
received considerable attention, with many studies suggest-
ing important roles for temperature and accumulation of
reactive oxidative species, as well as other factors, in the
cascade of changes that appear to result from this high-dose
‘binge’ protocol (Farfel and Seiden, 1994; Seiden and Sabol,
1995; Stephans and Yamamoto, 1996; Wrona et al, 1997; Xie
et al, 2000; Davidson et al, 2001; Yuan et al, 2001; Larsen
et al, 2002).
Although these studies have stimulated considerable

interest in the neurotoxic effects that can result from
high-dose METH-like drugs, we have argued that the drug
administration paradigm typically used in this research
does not include a relevant feature of stimulant abuse in
humans (Segal and Kuczenski, 1997a, b, c; Segal and
Kuczenski, 1999a, b). That is, most high-dose METH
abusers initially use lower doses, administered at relatively
long intervals, before progressively increasing the dose and
reducing the interval between successive administrations,
eventually engaging in multiple daily administrations
(Kramer, 1972; Angrist, 1994; Gawin and Khalsa, 1996;
Huber et al, 1997; Simon et al, 2002). Importantly, the
increased levels of stimulant exposure are achieved in the
absence of many of the toxic effects that are typically
associated with high acute stimulant doses, for example,

daily intake of up to several grams in humans occurs
without lethality (Angrist, 1994; Lit et al, 1996; Volkow et al,
1999; Davidson et al, 2001; Simon et al, 2002). Therefore, it
appears that tolerance develops to many of the peripheral
and central effects of the drug during the period of drug
escalation (Fischman and Schuster, 1974; Schmidt et al,
1985a; Cook et al, 1992; Angrist, 1994; Lit et al, 1996). Of
particular relevance, this tolerance that occurs during the
escalating dose (ED) phase of abuse, likely impacts many
other actions of the subsequent high-dose stimulant
exposure. Therefore, to more closely approximate high-
dose METH abuse patterns, including the progressive
increase in drug dose that typically precedes high-dose
use, we have employed an ED-daily multiple administra-
tions paradigm. Our previous results revealed that this
stimulant protocol produced the progressive emergence of a
unique behavioral profile and concomitant regionally
specific DA response patterns in the striatum (Segal and
Kuczenski, 1997a, b, c; Kuczenski and Segal, 1997). These
effects appear to be both qualitatively as well as quantita-
tively different from the responses we have observed with
any acute dose or single daily injection pattern of stimulant
treatment. Therefore, it is conceivable that pretreatment
with an ED regimen might also significantly alter the
neurotoxic profile typically associated with subsequent
exposure to a single high-dose METH binge. The results
of the present study support the hypothesis that, some
characteristic behavioral, physiological, and neurochemical
indices of METH-induced toxicity are significantly attenu-
ated in this animal model that approximates the ED binge
pattern of stimulant abuse.

MATERIALS AND METHODS

Subjects

Male Sprague–Dawley rats, weighing 325–350 g at the
beginning of drug treatment, were housed for at least 1
week prior to experimental manipulation in groups of two
or three in wire mesh cages, with ad libitum access to food
and water, in a temperature- and humidity-controlled room.
The room as well as the experimental chambers (see below)
were maintained on a reversed 12-h dark (0700–1900), 12-h
light cycle to facilitate testing during the normal active
phase of the awake/sleeping cycle. During the dark period,
all facilities were illuminated with red light to enable
accurate observation of the animals. Animals were obtained
from Simonsen Labs (Gilroy, CA). All studies adhered to
animal welfare guidelines (‘Principles of Laboratory Animal
Care,’ NIH Publication #85-23).

Apparatus

Behavior was monitored in custom-designed activity
chambers (Segal and Kuczenski, 1987). Briefly, each of the
chambers was located in a sound-attenuated cabinet
maintained on a reversed 12-h dark 12-h light cycle with
constant temperature (241C, see below) and humidity
(557 5%). Each chamber consisted of two compartments:
an activity/exploratory compartment (30� 20� 38 cm) and
a smaller ‘home’ compartment (14� 14� 10 cm) in which
food and water were available ad libitum. Movements of the
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animal between quadrants within the activity/exploratory
compartment (ie crossovers) and rearings against the wall,
as well as eating and drinking and other vertical (eg contact
with a hanging stimulus) and horizontal movements (eg
intercompartment crossings) were monitored continuously
by computer. In our previous ED-binge treatment studies,
observations of animals during the locomotor phase
suggested that enhanced locomotion was typically displayed
in the form of burst-like patterns in which most crossovers
between quadrants were made in rapid succession of one
another (ie between 0 and 2 s). In order to obtain a
quantifiable index of this increased rate of movement, we
added to our data collection system the capability of
separately monitoring the crossovers made within a 0–2 s
intercrossover interval (ICI), that is, 0–2 s ICI. These rapid
crossovers were separately monitored and presented as a
percent of total crossovers (locomotor rate index).
In addition to the computer-monitored behaviors, at least

one-half of the animals (selected randomly) were simulta-
neously videotaped for 60 s at successive 5-min intervals for
up to 8 h, in order to assess the qualitative features of the
response during both the stereotypy and poststereotypy
phases. Raters who were unaware of the specific experi-
mental conditions subsequently rated the videotapes on the
basis of behavior ethograms and rating procedures estab-
lished previously (Segal and Kuczenski, 1987). Stereotypy
was assessed as the percentage of the observation interval
during which the animal displayed each specific behavior.
The appearance of other atypical responses or behavior
patterns, undetectable by our automated methods, was
noted by the rater after each sampling interval.

Drugs

D-METH hydrochloride (Sigma Chemical Co., St Louis, MO)
was dissolved in saline and administered s.c. (2ml/kg, to
avoid local irritation that might be produced by high
concentrations). Doses represent the free base.

General Procedures

At 3 days prior to the beginning of drug treatment, animals
(n’s¼ 10) were placed in individual experimental chambers,
where they remained for the duration of the experiment. To
facilitate habituation to the procedures, animals were
handled and injected with saline at least once a day. During
the remainder of the day and night, animals were not
disturbed. Throughout the remaining phases of each study,
groups of control animals were administered single daily
injections of saline. (In a parallel experiment, separate
groups of animals (saline, acute binge, n’s¼ 7) were
maintained under identical treatment conditions, but
automated behavioral data were not collected.)
Following the habituation period, groups of animals were

initially exposed to the ED phase of drug administration.
During this phase, animals received three injections per day
of saline or gradually increasing doses of METH for 14 days
as summarized in Table 1.
On the day following the ED pretreatment, animals were

exposed to the binge treatment consisting of four successive
injections of 6.0mg/kg METH at 2-h intervals, beginning at
0900. Preliminary studies indicated that core temperature

was significantly elevated at 120min after the third METH
injection, and assessment of temperature at this time point
enabled full characterization of the temporal pattern of the
behavioral response to the final METH administration
without disturbing the animals. Therefore, core temperature
was assessed, and observational behavioral ratings were
carried out immediately prior to the fourth injection of the
METH binge. At this time, each animal was removed from
the behavioral chamber and the presence or absence of
salivation, nasal discharge, and/or dark secretions around
the eyes was noted. The animal was then placed with its
head positioned in the center of a 160 diameter circle in an
open field (240 � 240), and the number of seconds (up to
30 s) for the animal’s forepaws to cross the target circle was
recorded. The core temperature was then taken with a 20

flexible probe (YSI Instruments, Model 4600), allowed to
equilibrate for 60 s after insertion. The animal then received
the fourth injection of the METH binge or saline and was
returned to the behavioral chamber for characterization of
the full temporal profile of the behavioral response to the
injection.

Ambient Temperature

The ambient temperature was maintained at 241C, compar-
able to most previous studies of METH-induced toxicity.
Consistent with other reports in the literature, our pilot data
revealed that a small increase in ambient temperature to
25.51C, resulted in a marked decrease in the ability of
animals to survive an acute METH (6mg/kg) binge: five of
seven were dead or prone within 15min after the fourth
METH injection. We did find, however, that all ED-
pretreated animals survived the METH binge, and only
one exhibited evidence of a toxic reaction, that is, prone at
30min after the fourth injection.

Biochemical Analyses

Animals were killed for tissue analyses of DA and
metabolites, and of [3H]WIN 35,428 and [3H]DTBZ binding
3 days after the binge. For tissue levels of DA and

Table 1 ED Pretreatment Schedule

METH dose (mg/kg)

0900 1215 1630

Day 1 0.1 0.2 0.3
Day 2 0.4 0.5 0.6
Day 3 0.7 0.8 0.9
Day 4 1.0 1.1 1.2
Day 5 1.3 1.4 1.5
Day 6 1.6 1.7 1.8
Day 7 1.9 2.0 2.1
Day 8 2.2 2.3 2.4
Day 9 2.5 2.6 2.7
Day 10 2.8 2.9 3.0
Day 11 3.1 3.2 3.3
Day 12 3.4 3.5 3.6
Day 13 3.7 3.8 3.9
Day 14 4.0 4.0 4.0
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metabolites, samples were prepared according to Schmidt
et al (1990) and were analyzed using HPLC with electro-
chemical detection as previously described (Kuczenski et al,
1995).

WIN 35,428 binding assay. Caudate-putamen tissue was
sonicated (Vibra-Cell homogenizer) in 100 volumes (w/v) of
ice-cold binding buffer (20mM sodium phosphate, 0.32M
sucrose, pH 7.4), and centrifuged at 40 000g for 20min. The
resultant pellets were resuspended/recentrifuged and then
diluted in 50w/v (original wet weight) of ice-cold binding
buffer. Aliquots of each membrane suspension (100 ml;
approx 80 mg protein as determined by the Lowry method)
were incubated in triplicate with [3H]WIN 35,428 (final
concentration 5 nM) for 90min at 41C; nonspecific binding
was determined in the presence of 30 mM cocaine. Binding
was terminated by rapid filtration through GF/B glass fiber
filters (presoaked in 20mM sodium phosphate buffer, pH
7.4, containing 0.1% polyethylenimine) that were mounted
on a Brandel vacuum cell harvester. The tissues were
washed three times with 5ml of ice-cold sodium phosphate
buffer (vacuum flowing), and the filters were placed in 10ml
Ecoscint for liquid scintillation counting.

[3H]DTBZ binding assay. Caudate-putamen tissue was
processed as above except for the following: incubation (2 h
at room temperature) with 2 nM [3H]DTBZ; nonspecific
binding determined in the presence of 20 mM tetrabenazine.

Data Analysis

Behavioral and neurochemical data were statistically
analyzed using repeated measures ANOVA and t-tests with
Bonferroni corrections for specific group/time.

RESULTS

Behavioral/Physiological Measures

At 2–3min prior to the fourth injection on the binge day,
the appearance and responsiveness of the animals were
noted and the core temperature was recorded (see Materials
and methods for details). When the chamber door was
opened, nonpretreated, METH binge rats (n¼ 10) were
engaged in relatively intense focused oral stereotypies (ie
biting, gnawing, and/or licking) that continued even while
they were being handled. This behavior resumed almost
immediately when the animals were individually placed in
the center of an open field chamber, from which all but two
did not move for the duration of the 30-s test period. In
addition, eight of the 10 rats in this group exhibited signs of
both excess salivation, evidenced by marked wetness on
their chin and neck regions, as well as darkening around the
eyes due to excess porphyrin discharge from the Harderian
gland.
In contrast, the animals pretreated with the ED protocol

prior to the binge exposure (n¼ 10), were markedly
different in both appearance and responsivity. None of
these rats was engaged in intense stereotypies when the
chamber doors were opened, and the milder forms of
stereotypy they displayed ceased when these rats were
handled. Furthermore, all but one animal moved from the

center of the open field within the 30-s trial period (time to
exit center: pretreated vs nonpretreated, 12.07 2.8 and
28.57 1.4 s, t¼ 5.2; Po0.0001). Differences between the
two groups were also revealed in measures of the core body
temperature, which were significantly elevated only in the
nonpretreated rats (Figure 1).
The behavioral response to the binge treatment, including

both its locomotor (Figure 2) and stereotypy (Figure 3)
components, was also profoundly altered by the ED
treatment. This difference between ED and saline pretreated
groups is most apparent in their comparison after the
fourth injection, which allows for a full characterization of
the temporal pattern of the behavior. The response of the
saline-pretreated rats to the fourth injection of the METH
binge consisted primarily of focused oral stereotypies,
which appeared within several mins after injection, and
included continuous biting, gnawing, and/or licking,
primarily directed at the floor of the chamber. This intense
form of stereotypy persisted for at least 3 h in most rats, at
which time it was replaced by focused sniffing and/or
repetitive head movements for about 1.5 h. Relatively low
levels of locomotor activity, occasionally interrupted by
progressively more intermittent episodes of mild stereo-
typy, were exhibited for the remaining 2 h of the response.
In marked contrast, the focused stereotypy phase of the

ED pretreated animals was substantially shorter, that is,
about 2–3 h in duration for most rats in this group and the
response contained a significantly greater proportion of the
milder forms of the behavior, that is, sniffing and repetitive
head movements (Figure 3). In addition, unlike the saline-
pretreated rats, these animals exhibited a pronounced
period of locomotor activation that emerged after the
stereotypy phase, and during which there were relatively
frequent episodes of ‘bursting’ locomotion (Figure 2; see
Materials and methods for details).

Figure 1 Effects of ED pretreatment on core temperatures during a
METH binge. Animals were treated with saline (SAL) or increasing doses of
METH as described in Materials and methods, then exposed to an METH
binge (6mg/kg/2 h� 4 injections). Core temperature values were obtained
immediately prior to the fourth injection, and are presented as Mean7 SEM.
***Po0.001 compared to Saline. ++Po0.01 compared to ED binge.
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Figure 2 Effects of ED pretreatment on locomotor response monitored after the fourth injection of a METH binge. Animals were treated with saline or
increasing doses of METH as described in Materials and methods, then exposed to an METH binge (6mg/kg/2 h� 4 injections). (a) Temporal pattern of
locomotion for 6 h after the fourth injection of the binge. Bar graphs depict the cumulated response over the indicated interval for: (b) prestereotypy
crossovers; (c) left, poststereotypy crossovers; and (c) right, percentage of total crossovers occurring within the 0–2 s ICI (see Materials and methods for
details). *Po0.05; **Po0.01; ***Po0.001 compared to the SAL-pretreated group.

Figure 3 Effects of ED pretreatment on the stereotypy response after the fourth injection of a METH binge. Animals were treated with saline or
increasing doses of METH as described in Materials and methods, then exposed to a METH binge (6mg/kg/2 h� 4 injections). (a) Temporal pattern of
repetitive head movements. (c) Temporal pattern of oral stereotypy. Bar graphs depict the cumulated response over the indicated interval for: (b) repetitive
head movements and (d) oral stereotypy. **Po0.01; ***Po0.001 compared to the SAL-pretreated group.
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Neurochemical Measures

To examine the effects of ED pretreatment on the
consequences of an METH binge exposure on DA nerve
terminal integrity, levels of the transmitter, its metabolites,
and the binding of [3H]WIN 35,428 to the DAT and
[3H]DTBZ to the vesicular transporter were assessed in
caudate-putamen 3 days following the final METH injection.
The results are summarized in Table 2. The acute METH
binge resulted in significant deficits in DA, its metabolites,
and levels of [3H]WIN 35,428 and [3H]DTBZ binding to
caudate-putamen membranes. ED pretreatment signifi-
cantly attenuated the effects of the METH binge on all
parameters with the exception of [3H]DTBZ binding to the
vesicular transporter.

DISCUSSION

Considerable evidence suggests that abuse of the ampheta-
mines in humans often begins with a period of relatively
gradual dose escalation, during which tolerance develops to
many of the toxic or lethal effects of the high cumulative
doses ultimately attained during ‘binges’ (Zalis and
Parmley, 1963; Fischman and Schuster, 1974; Kalant and
Kalant, 1975; Schmidt et al, 1985a; Cook et al, 1992; Angrist,
1994; Lit et al, 1996). Since the pattern of drug adminis-
tration, as well as dose, can significantly influence both the
quantitative and qualitative effects of the drug (Gawin and
Khalsa, 1996; Unterwald et al, 2001; Riddle et al, 2002a), we
suggested that animal model paradigms designed to study
the effects of high-dose stimulant abuse should attempt to
simulate this pattern of ED exposure (Segal and Kuczenski,
1997a, b, c; Kuczenski and Segal, 1997). In the present study,
we demonstrated that ED pretreatment profoundly altered
the response to a single binge with high-dose METH, both
with respect to striatal DA markers most often assessed in
human METH abusers, as well as a behavioral response
profile, that is, stereotypy, known to be significantly
mediated by METH actions on striatal DA systems. These
response changes in ED-pretreated animals were accom-
panied by the development of tolerance to the hyperthermia
and to several other indices of toxicity as evidenced by the
pronounced sympathetic activation observed in rats who
did not receive this pretreatment prior to the METH binge.
The acute METH binge protocol used in the present study

produced significant decreases in a number of striatal DA
terminal markers, including DA content (37% decrease),
and DAT and VMAT2 binding (32% decrease and 15%
decrease, respectively). These effects, which were apparent 3
days following the acute METH binge, are generally

comparable to the degree of change reported by others
using similar dose regimens administered to rats (4–6mg/
kg/2 h� 4 injections). For example, Eisch et al (1996)
reported a near 40% decrease in DAT binding 6–7 days after
an acute binge, and Frey et al (1997) found similar
reductions in DAT binding as well as a 26% decrease in
VMAT2 binding. In all, 40% decreases in DA levels are also
typical of this dose range (Bowyer and Holson, 1995),
although decrements higher than 50% have also been
reported (Cass and Manning, 1999).
Many of the effects associated with the acute binge-

induced neurotoxicity have been shown to persist long after
exposure to the drug. However, significant recovery has
often been apparent when these markers are assessed at
successive withdrawal times. For example, in one recent
study (Cass and Manning, 1999), rats treated with METH
(5mg/kg/2 h� 4 injections) were found, 1 week later, to
have pronounced changes in a number of striatal DA
processes as indicated by decreases in basal DA and its
metabolites; evoked overflow of DA and DA clearance, that
is, uptake, were also lower. Evoked overflow had partially
recovered by 1 month and was at normal levels by 6
months, whereas tissue levels required 12 months to fully
recover, at which time all parameters measured had
returned to control values. Others have also reported
long-term, albeit incomplete, recovery of DA content in
the striatum of rats after neurotoxic doses of METH
(Bowyer et al, 1992; Friedman et al, 1998). In monkeys,
Melega et al (1997) showed that striatal DA levels and DA
synthesis capacity, as assessed with PET and [18F]fluoro-L-
DOPA, exhibited significant recovery at 12 weeks after
treatment with METH or AMPH (2mg/kg/4 h� 2 injec-
tions). Subsequently, in other PET studies using [11C]WIN
35,428 (WIN)-, a cocaine analog that binds to theDAT, they
reported that an initial 80% reduction in WIN binding
produced by a similar METH treatment almost fully
recovered by 1.5 year (Harvey et al, 2000).
These findings in both rats and infrahuman primates

indicate that while the rate of recovery varies widely
depending on the specific striatal DA marker, many
prominent indices of DA terminal neurotoxicity previously
assessed display at least some degree of recovery. In
addition, evidence suggests species- and age-differences in
the vulnerability to METH and it appears that some indices
may be permanently attenuated (ie only partially recover)
depending on the extent and severity of the METH
treatment (Ojeda et al, 1980; Lucot et al, 1982; Woolverton
et al, 1989; Cappon et al, 1997; Cass and Manning, 1999;
Kokoshka et al, 2000; Riddle et al, 2002a). However, when
recovery has been demonstrated, the differential rates

Table 2 Effects of ED Pretreatment on METH Binge-Induced Changes in Caudate-Putamen DA Nerve Terminal Markers

DA (nmol/g
tissue)

DOPAC (nmol/g
tissue)

HVA (nmol/g
tissue)

[3H]WIN 35,428
(fmol/lg protein)

[3H]DTBZ (fmol/
lg protein)

Control 87.77 2.0 10.77 0.3 3.77 0.1 0.2727 0.033 0.5637 0.02
Acute binge 55.17 4.3*** 8.27 0.6*** 2.67 0.2*** 0.1867 0.019*** 0.4827 0.02**
ED binge 78.97 1.7***### 11.67 0.5### 3.67 0.2### 0.2767 0.029## 0.4897 0.02**

ANOVA; DA: F[2,41]¼ 30.5, Po0.001; DOPAC: F[2,41]¼ 13.9, Po0.001; HVA: F[2,41]¼ 20.4, Po0.001; [3H]WIN 35,428: F[2,41]¼ 8.46, Po0.001; [3H]DTBZ:
F[2,40]¼ 6.90, Po0.01. Control n¼ 17; acute binge n¼ 17 (16 for [3H]DTBZ); ED binge n¼ 10.
**Po0.01, ***Po0.001 compared to control; ##Po0.01, ###Po0.001 compared to acute binge.
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apparent for the various markers could indicate that
different underlying mechanisms are involved. Thus, the
relatively short-term reversal of some of the dopaminergic
processes diminished by METH treatment may reflect
recovery after initial, transient inhibition or downregulation
in response to excessive release of DA (Wilson et al, 1996;
Guilarte, 2001). However, Cass and Manning (1999)
suggested that the prolonged time period required for full
recovery to occur is more consistent with changes initiated
by METH-induced degeneration of DA terminals. Accord-
ing to this notion, the relatively rapid recovery of markers is
mediated by upregulation in surviving terminals, with the
more gradual reversal of METH-induced effects resulting
from axonal sprouting and reinnervation of the striatum.
Although some indirect evidence supports this notion (Axt
et al, 1994), further, more systematic morphometric
analyses will be required to accurately determine the
possible role of these mechanisms in the recovery process
after neurotoxic METH treatment.
In addition to this apparent recovery, which for some

measures requires relatively long time periods after
exposure to an acute binge, we found that some of the
METH-induced effects measured three days after exposure
to the binge, were significantly reduced by ED pretreatment:
the binge-induced decrease in DA levels was attenuated and
the reduction in DAT binding was completely blocked.
These findings are consistent with other studies showing
that various acute METH binge effects on DA pathways are
diminished by prior METH treatment. In previous reports,
two different paradigms were used to examine the effects of
pretreatment on the neurotoxicity produced by an acute
binge. In one series of studies, a sequence of binges with ED
(2–7.5mg/kg), separated by 1-day withdrawal periods,
served as the METH pretreatment for subsequent challenge
with an extremely high-dose METH binge (15mg/kg/6 h� 5
injections) (Schmidt et al, 1985b). These researchers found
that the toxic binge-induced reductions in a number of
striatal DA and 5HT markers, including the concentration
of each of the transmitters as well as their metabolites and
rate-limiting enzymes, were either attenuated or prevented
in pretreated animals. A similar protective effect was
identified for sulpiride binding in both caudate-putamen
and nucleus accumbens (Schmidt et al, 1985a). Further-
more, since forebrain levels of METH and AMPH were
found to be reduced in METH-pretreated animals, these
investigators concluded that dispositional factors were
responsible for the tolerance development. Based on the
results of more recent follow-up studies designed to
examine further the role of pharmacokinetic changes
associated with the sequential escalating binge paradigm,
this research group concluded that the tolerance is due to
changes in the plasma to brain distribution of METH, rather
than to enhanced metabolism of the drug (Alburges et al,
1990; Gygi et al, 1996).
In addition to these multi-binge, high-dose studies, the

relationship between pretreatment with various sensitiza-
tion regimens and an acute neurotoxic binge has also been
characterized. Stephans and Yamamoto (1996) examined
indices of striatal neurotoxicity following a drug METH
protocol of seven single daily injections of METH (2mg/kg)
and a subsequent exposure to an METH binge challenge
(7.5mg/kg/2 h� 3 injections) 1 week after the last pretreat-

ment. When measured 4 days following the binge, striatal
DA and 5-HT were significantly less depleted in pretreated
animals. Using a similar paradigm, Abekawa et al (1997)
found that decreases in striatal 5HT, 5HIAA, and DA
metabolite levels produced by an METH binge (5mg/kg/
2 h� 4 injections) were attenuated by AMPH pretreatment
(4mg/kg, for 10 days); however, no significant protection
was evident in the METH binge-induced reduction of
striatal DA content. Finally, Riddle et al (2002a) recently
examined the effects of high-dose METH exposure during
adolescence (6 biweekly, 15mg/kg METH injections begin-
ning at postnatal day 40) on several DA markers of
neurotoxicity produced by an acute METH binge (10mg/
kg/2 h� 4 injections) administered in 90-day old rats.
Pretreatment was found to prevent the pronounced binge-
induced decreases in striatal synaptosomal DA uptake and
DAT ligand binding. Pharmacokinetic tolerance was ruled
out in this study since brain METH concentrations did not
differ between pretreated and nonpretreated animals. This
observation is consistent with our previous finding of no
decrease in brain levels of METH and AMPH as a function
of ED pretreatment (Segal and Kuczenski, 1997c). Further-
more, although ED pretreatment does lead to a decrease in
the caudate-putamen extracellular DA response and a
corresponding attenuated stereotypy response to a subse-
quent binge (see below for further discussion), the
decreased DA response is selective to caudate-putamen
DA; that is, neither the nucleus accumbens DA response,
nor the hippocampus NE response was attenuated (Segal
and Kuczenski, 1997a; Kuczenski and Segal, 1997). There-
fore, it appears that drug dispositional changes may occur
only when METH pretreatment and/or binge doses are
relatively high. Furthermore, particularly when lower doses
have been used, the degree of protection has often appeared
to be not only brain region- and transmitter-dependent, but
also dependent on the specific measure of neurotransmitter
function (Segal and Kuczenski, 1987; Eisch et al, 1992; Eisch
and Marshall, 1998; Friedman et al, 1998; Wilson et al, 1994;
Chapman et al, 2001). Thus, for example, when tested
subsequent to the binge, whereas both basal DA and the
stimulant-induced extracellular DA response are attenuated
by an acute binge (Cass and Manning, 1999), only basal DA
is protected when the binge is preceded by ED pretreatment
(Segal and Kuczenski, 1997a, b, c; Kuczenski and Segal,
1997). These observations support the view that multiple
mechanisms are implicated in the spectrum of effects
observed in these studies.
One possible mechanism for the tolerance exhibited by at

least some components of the neurotoxic profile may relate
to the pronounced sympathetic activation produced by
METH. In this regard, a number of studies have examined
the possible role of METH-induced hyperthermia in the
neurotoxicity produced by exposure to a single, high-dose
METH binge regimen. Although some evidence does not
support a causal relationship, it appears that under many
conditions, hyperthermia, perhaps in combination with
other factors, is significantly implicated in the DA
neurotoxicity produced by METH (Bowyer et al, 1994;
Albers and Sonsalla, 1995; Ali et al, 1996; Cappon et al,
1997; Kuperman et al, 1997; Callahan and Ricaurte, 1998;
Malberg and Seiden, 1998; Sandoval et al, 2000; Yuan et al,
2001; Riddle et al, 2002a). Tolerance to effects such as
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hyperthermia would then be expected to result in a
corresponding attenuation of the susceptibility to METH-
induced neurotoxicity. Our measures of DA content and
DAT binding are consistent with such a relationship and, in
fact, a similar interpretation was recently proposed by
Riddle et al (2002a), based on their study of the
pretreatment effects of chronic METH exposure initiated
in adolescent rats. It should be noted, however, that
particularly with respect to the ED regimen used in our
study, the changes in DA markers and hyperthermia
observed in pretreated animals may simply reflect parallel,
but independent effects of ED pretreatment on different
central and peripheral responses to the binge regimen.
Consistent with this interpretation, we previously found
that the caudate-putamen extracellular DA response to an
acute binge is significantly reduced by ED pretreatment
(Segal and Kuczenski, 1997a; Kuczenski and Segal, 1997). If
the acute binge-induced decreases in DA and DAT binding
levels reflect, at least in part, compensatory adjustments
initiated by excessive release of caudate DA, then the
diminished DA release after ED pretreatment would be
expected to produce a correspondingly reduced activation
of these compensatory processes. Alternatively, a decrease
in DA available for METH-induced release in ED-pretreated
animals could be responsible for the attenuated neurotoxic
effects by producing less terminal damage. In fact, some
evidence suggests that METH-induced excesses in DA,
perhaps converted into reactive oxygen species either intra-
or extra-neuronally, may be related to degeneration of DA
terminals (LaVoie and Hastings, 1999; Fleckenstein et al,
2000; Davidson et al, 2001; Larsen et al, 2002). It should be
noted, however, that METH-induced hyperthermia also
occurs in the form of increased regional brain temperatures
(Clausing and Bowyer, 1999). Such local temperature
changes may be of sufficient magnitude to alter a number
of neurochemical processes, including those that modulate
DA release. Therefore, tolerance to these hyperthermic
effects could be responsible for the attenuated METH-
induced DA release after ED pretreatment. Further studies
are required to identify the precise role of temperature
changes in METH-induced DA release.
Regardless of the mechanisms underlying tolerance

development, our results show that ED pretreatment
markedly diminishes the effect of an acute METH binge
on DA and DAT levels. Since both of these measures are
commonly used markers for DA neurotoxicity, it could be
concluded that under conditions which approximate a
common pattern of METH abuse in humans, DA terminal
degeneration may be marginal, if it occurs at all. In fact, on
the basis of their post-mortem study of additional DA
terminal markers in chronic METH abusers, Wilson et al
(1996) suggested that METH did not result in DA terminal
damage.
However, our finding that the acute METH binge-induced

decrement in VMAT2 binding was not reversed by ED
pretreatment is not consistent with this interpretation, since
it has been argued that changes in the vesicular transporter
may more accurately reflect the integrity of nigrostriatal DA
terminals (Naudon et al, 1994; Vander Borght et al, 1995;
Wilson and Kish, 1996; Wilson et al, 1996; Frey et al, 1997;
Guilarte, 2001). In contrast, alterations in other measures
such as DA and DAT levels may occur as a consequence of

either compensatory adjustment or terminal damage
(Wiener et al, 1989; Kilbourn et al, 1992; Wilson et al,
1996; Frey et al, 1997; Guilarte, 2001; Little et al, 2003). In
addition, as noted above, upregulation in surviving
neurons, along with subsequent neuronal sprouting may
be responsible for the different times required for DA
markers to recover after neurotoxic METH exposure (Cass
and Manning, 1999). In this regard, the gradual neuronal
sprouting could account for the apparent recovery of
VMAT2 that has been observed in primates 1.5 years after
brief exposure to METH (2� 2mg/kg, 6 h apart) (Harvey
et al, 2000). It is important to note, however, that while the
VMAT2 marker has been considered by many to be an
index of DA terminal integrity, it is also possible that some
METH effects on this transporter reflect selective damage to
the vesicle in the absence of terminal degeneration, as is
evident following reserpine administration, which would
then require synthesis and axonal transport of new vesicles
for eventual full recovery of vesicular-dependent functions
(Häggendal and Lindqvist, 1964). Furthermore, recent
evidence suggests relatively rapid METH-induced changes
in the subcellular distribution of VMAT2 (as well as DAT)
(Riddle et al, 2002b; Sandoval et al, 2003). Although these
changes appear to be reversed within 24 h of drug
administration, their potential contribution to more persis-
tent METH-induced changes remain to be determined.
Regardless of the mechanisms involved, our data confirm

and extend the important observation that tolerance to at
least some of the neurotoxic effects produced by moderate
to high-dose binge protocols, is conferred by a relatively
wide range of METH pretreatment regimens. It is also
apparent from other chronic stimulant studies that the
specific qualitative nature, persistence, and degree of the
neurochemical and behavioral change produced by METH
administration likely depend not only on the characteristics
of the binge itself, but also on the pattern and conditions
associated with the pretreatment regimen (Schmidt et al,
1985b; Unterwald et al, 2001; Riddle et al, 2002a). Therefore,
we have argued that animal models designed to examine the
consequences of stimulant abuse should incorporate a
relatively long period of gradually EDs prior to binge
exposure. In our study, we have attempted to approximate
this pattern to identify more accurately the neurochemical
and behavioral changes relevant to those that occur as a
consequence of high-dose METH abuse.
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