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This paper addresses the issue of stability and flexibility of neural systems, and how a balance can be achieved. Assuming a close

correspondence with cognitive and mental processes, we use a cortical neural network model to investigate how regulation of the

neurodynamics can result in an efficient information processing, in terms of learning and associative memory. In particular, we use this

model to investigate relations between structure, dynamics, and function of a neural system, and how the stability-flexibility dilemma may

be solved by proper regulation. We focus on the complex neurodynamics and its modulation, and how this is related to the neural

circuitry, where synaptic modification and network pruning are considered. Finally, we discuss the relevance of these results to clinical and

experimental neuroscience and speculate on a link between neural instability and mental disorders.
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INTRODUCTION

How can a system be flexible and adaptive, while
maintaining a sufficient stability? There seems to be a
trade-off between the two: a better stability is achieved at
the expense of a worse flexibility (adaptability), and vice
versa. Yet, it is essential that the system is stable to short-
term fluctuations, or common insignificant events, while it
should also be able to react to weak signals and rare
important events, as well as adapting to long-term changes.
This so-called stability–flexibility dilemma is of particular
concern for the neural system, which presumably has
evolved to give an efficient interaction with the environ-
ment. Such an evolutionary pressure is likely to be reflected
in both structure and dynamics, which are results of
processes at different time scales. A similar ‘dilemma’ of
keeping a (dynamical) balance between stability and
flexibility, or more generally, between order and disorder,
is likely to apply also to mental processes and disorders.

For example, it has been hypothesized (Feinberg,
1982; Saugstad, 1994; Siekmeier and Hoffman, 2002) that
mental disorders might be connected to the pruning
of the neural networks of the developing brain. The idea
is briefly the following: during initial development, a
neural system generally overproduces many structural
elements such as neurons, dendrites, axons, and synapses.
This is known as the ‘overshoot phenomenon’, which
enables the system to fine-tune itself subsequently to
account for environmental factors, where competitive
processes often govern the refinement of structure. For

example, refinement can occur through the death of
inappropriately connected neurons and through the reduc-
tion, pruning, of the number of synapses maintained by an
individual neuron. This structural refinement is a necessary
part of neural self-organization and provides further
adaptability.

The pruning, which decreases the total number of
synapses, is believed to result in an optimally efficient
neural network, as the developing brain integrates and
consolidates early experiences. In the last major step in
brain development, some 40% of the neuronal synapses are
eliminated (Saugstad, 1994). Although most of the pruning
of synapses occurs in childhood, learning-associated brain
plasticity including pruning seems to be a life-long process,
although learning may take new forms while old forms are
abandoned (Benefiel-Kunkel and Greenough, 1998; Ivanco
and Greenough, 2000). Saugstad (1989a, b, 1994) suggests
that pruning is a crucial part of the development of the
human brain, and that onset of puberty is linked to the last
major step in brain development.

When the pruning is shut down too soon (early
maturers), the synaptic density will be high and could be
subject to mutual electrochemical influences. These tend to
synchronize the neighboring neurons, which might be
locked into a pattern of paroxysmal activity, which
complicates the CNS function. In contrast, in late maturers
the synaptic density will be below optimal, because of
failure to shut down the pruning process. The reduced
synaptic density and the associated tendency to desynchro-
nization could lead to a general breakdown of circuitry.
Saugstad’s hypothesis says that both too early and too late
shut down of the pruning process could lead to mental
disorders. In early maturers, mano-depressive psychosis is
more common, while late maturers more often get
schizophrenia (Saugstad, 1994).
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This kind of structural changes that normally occurs
in the neural networks of the brain throughout life
is also apparent at later stages in life, as the adaptability
or learning capacity of the brain is gradually weakened. This
is, of course, particularly apparent in dementia, such as
Alzheimer’s syndrome, where learning is severely impaired.
Also strokes and lesions of various sorts can affect a natural
and healthy balance between stability and flexibility,
between order and disorder in our neural and mental
processes.

In addition to the structural aspect of the dilemma,
there is also a dynamical aspect. Most brain structures
exhibit complex neurodynamics, including oscillations
and chaotic-like behavior, as revealed by electroencephalo-
graphy (EEG) and multiunit recordings (Bressler and
Freeman, 1980; Freeman and Skarda, 1985; Skarda and
Freeman, 1987), result of the nonlinear neurodynamics
(‘chaos’), or of spontaneous neural activity (‘noise’). The
functional significance of this behavior is, however, yet
to be ascertained. Supposedly, the dynamics of certain
cortical structures, and perhaps of the brain as a whole,
reflect an evolutionary pressure to make the neural
information processing as efficient as possible (Liljenström,
1995, 1997; Århem and Liljenström, 2001). The oscillations
could amplify weak signals and sustain an input pattern for
more accurate information processing, and the chaotic
behavior could increase the sensitivity in initial, exploratory
states.

The complex neurodynamics can be regulated by
neuromodulators, and presumably also by intrinsic noise
levels. All natural systems are inevitably exposed to external
and/or internal fluctuations occurring at different temporal
scales. For neural systems, such fluctuations can be
problematic, but they may also be utilized for a more
efficient information processing (see Århem et al, 2000).
Thus, there should be a balance between stability and
flexibility that ensures an efficient information processsing.
Using mathematical modelling and computer simulations
we address this stability–flexibility dilemma, assuming there
is a close correspondence between the neural processes and
the mental processes. A mathematical/theoretical approach
should be an essential complement to experimental
methods in understanding the complexity of biological
systems and processes. Computational methods have since
long been used in neuroscience, most successfully for the
description of action potentials (Hodgkin and Huxley,
1952). Also, when investigating interactions between
different neural levels, computational models can be useful,
and sometimes the sole method of investigation. (For good
overviews on this approach, see eg Arbib et al, 1997;
Freeman, 2000.) In recent years, several works point
at the importance of applying computational methods
also to problems in clinical and experimental neuro-
science, even with implications for psychology and psy-
chiatry (Wright and Liley, 1996; Wright et al, 2000;
Freeman, 1999; Gordon, 2000; Huber et al, 1999, 2000,
2001). In this work, we use a model of the three-layered
paleocortex (olfactory cortex and hippocampus) which is
comparatively well characterized with regard to structure,
dynamics, and function. The relevance of this kind of
approach to clinical and experimental neurobiology is
discussed.

METHODS

In order to investigate relations between the neurodynamics
of cortical structures and functions, such as perception and
associative memory, we have developed a computational
model of the olfactory cortex and the hippocampus. These
cortical structures, which are similar in architecture and
dynamics, constitute a suitable model system for many
reasons, including a comparatively simple three-layered
structure, a well-studied neurodynamics, and a relatively
well-understood function. (For a good general overview of
this kind of approach, see eg Arbib et al, 1997; Freeman,
2000.) In the current study, we use our model to address the
problem of how neural systems can deal with the stability–
flexibility dilemma, as will be discussed later.

The model is of an intermediate complexity, with simple
network units and realistic connections. Network units
correspond to populations of neurons with a continuous
input–output relation, corresponding to the average firing
frequency or pulse density of neural populations. Three
different types of network units (cell populations) are
modelled, and the connectivity mimics the architecture of
the olfactory cortex and the hippocampus. This implies a
three-layered structure with two layers of inhibitory units
and one layer of excitatory units. The top layer consists of
inhibitory ‘feedforward interneurons’, which receive inputs
from an external source or brain structure, and from the
excitatory ‘pyramidal cells’ in the middle layer. They project
only locally to the excitatory units. The bottom layer
consists of inhibitory ‘feedback interneurons’, receiving
inputs only from the excitatory units and projecting back to
those. The two sets of inhibitory units are characterized by
two different time constants and somewhat different
connectivity to the excitatory units. In addition to the
feedback from inhibitory units, the excitatory units receive
extensive inputs from each other and from external
structures. All connections are modelled with distance-
dependent time delays for signal propagation, correspond-
ing to the geometry and fiber characteristics of the real
cortex. A mathematical description of the model is
summarized below. (A more detailed description with
parameter values, etc can be found in Liljenström, 1991;
Liljenström and Hasselmo, 1995.)

The time evolution for a network of N neural units is
given by a set of coupled nonlinear first-order differential
delay equations for all the N internal states, u. With external
input, I(t), characteristic time constant, ti, and connection
weight wij between units i and j, separated with a time delay
dij, we have for each unit activity, ui,

dui
dt

¼ � ui
ti
þ
XN
j6¼i

wijgj½ujðt � dij� þ IiðtÞ þ xðtÞ: ð1Þ

The input–output function, gi(ui), is a continuous
sigmoid function, experimentally determined by Freeman
(1979):

gi ¼ CQi 1 � exp
� expðuiÞ � 1

Qi

� �� �
: ð2Þ

The gain parameter Qi determines the slope, threshold, and
amplitude of the curve for unit i. This gain parameter is
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associated with the level of arousal, or alternatively, the level
of any particular neuromodulator (Freeman, 1979; Servan-
Schreiber et al, 1990; Cohen and Servan-Schreiber, 1993). C
is generally a normalization constant. Neuronal adaptation
is sometimes implemented as an exponential decay of the
output, proportional to the time average of previous output
(Liljenström and Hasselmo, 1995). In such cases, C is not a
constant, but instead denotes the adaptation function, and
the input–output relation becomes

giaðuiÞ ¼ giðuiÞ expf�½ahgiðuÞiT �
2g; ð3Þ

where /ST denotes the time average over the last Tms, and
a is an adaptation parameter that is under neuromodulatory
(cholinergic) control. Noise or spontaneous neural activity
is represented by a Gaussian noise function, x(t), such that
/x(t)S¼ 0 and /x(t)x(s)S¼ 2Ad(t�s).

The connection weights wij are initially set and con-
strained by the general connectivity principles that have
evolved for the three-layered cortex. To allow for learning
and associative memory, the connection weights wij are
incrementally changed, according to a learning rule of
Hebbian type (Hebb, 1949), adapted for the system
dynamics. It takes into account that there is a conduction
delay, dij, between the output (presynaptic) activity of one
network unit and its (postsynaptic) effect on the receiving
unit. With learning rate Z the change in connection weight
between unit j and i is given by

Dwij ¼ Zgi½uiðtÞ�gj½ujðt � dijÞ�ðwmax � wijÞ; ð4Þ
where wmax is the maximum strength of an intrinsic
synaptic connection.

Results with learning and memory can be further
improved by using a modified learning rule, which is
optimized for an oscillatory dynamics, and where weight
modifications only occur for synchronized signals:

dwij

dt
¼ Z

dgi½uiðtÞ�
dt

dgj½uiðt � dijÞ�
dt

ðw � wijÞ: ð5Þ

This new learning algorithm results in weight modifications
that, in addition to the spatial aspects, include information
of the exact signal timing. Thus, the mechanisms enable the
storage of spatio-temporal patterns in contrast to solely
spatial patterns. In addition, the induced learning perfor-
mance is remarkably stable against noise and, because of
the ability to decrease selectively weights, saturation effects
as well as large shifts of the mean excitation–inhibition
balance in the network are avoided. In short, the proposed
learning rule has the essential prerequisites to provide an
accurate and stable learning performance.

RESULTS

We use our cortical neural network for simulating dynamics
and functions of real brain structures, and in particular to
address the stability–flexibility dilemma of neural systems.
Parameter values used for these simulations are, as far as
possible, based on physiological and anatomical data, but
some parameters, such as connection weights (synaptic
strengths), levels of neuromodulation, etc were not possible
to obtain from the experimental data, and had to be tuned.

We have previously shown that our cortical neural
network model can reproduce essential characteristics of

olfactory cortex and hippocampus neurodynamics (Liljen-
ström, 1991, 1995, 1997; Liljenström and Hasselmo, 1995;
Liljenström and Wu, 1995; Århem and Liljenström, 2001). It
describes intrinsic oscillatory properties of these structures,
and reproduces response patterns associated with a
continuous random input signal and with a shock pulse
given to the cortex. In the latter case, waves of activity move
across the model cortex, consistent with corresponding
global dynamic behavior of the functioning cortex. For a
constant random input, the network is able to oscillate with
two separate frequencies simultaneously, around 5 Hz (theta
rhythm) and 40 Hz (gamma rhythm), purely as a result of its
intrinsic network properties and time constants (obtained
from membrane capacitances and resistances for the
different types of cells). A balance between inhibition and
excitation, in terms of connection strength and timing of
events, is necessary for coherent frequency and phase of the
oscillating neural units. Under certain conditions, the
system can also display chaotic-like behavior, similar to
what can be found in EEG traces, see Figure 1 (Bressler and
Freeman, 1980; Freeman and Skarda, 1985; Skarda and
Freeman, 1987, Freeman, 2000). All of these phenomena
have been shown to depend critically upon the network
structure, in particular feedforward and feedback inhibitory
loops and long-range excitatory connections modelled with
distance-dependent time delays. Details concerning neuron
structure or spiking activity are not necessary for this type
of dynamic behavior.

In the following, we will focus on a few aspects related to
the stability–flexibility dilemma, that is, how a neural
system can be sensitive, flexible, and adaptive, while
maintaining necessary stability. In particular, we show (1)
how a complex neurodynamics can provide both flexibility
and stability for the system and (2) how this neurodynamics
can be regulated by means of neuromodulators (such as
acetylcholine (ACh)) and noise, in order to change system
sensitivity and response rapidness. We also investigate (3)
how the network connectivity is linked to its dynamics and
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Figure 1 Real (top) and simulated (bottom) EEG, showing the complex
dynamics of cortical structures. The upper trace is from rat olfactory cortex
(data courtesy of Leslie Kay), whereas the bottom trace is from a simulation
with the current model of the olfactory cortex. The x-axis shows
milliseconds, and the y-axis is in microvolts.
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learning capacities, and what effects synaptic modification
and pruning may have on the balance between stability and
flexibility, relating to the pruning hypothesis (Feinberg,
1982; Saugstad, 1994; Siekmeier and Hoffman, 2002).

Complex Neurodynamics

What system properties are responsible for a flexible and
adaptive response to external (and internal) changes?
Flexibility, or adaptation, can be considered at several time
scales. At an evolutionary scale, there is a slow adaptation
that is genetically determined, resulting in the gross
structure of the nervous system and the initial neural
organization of the newborn brain. However, as discussed
in the Introduction, already in the fetus, the genetically
determined neural organization of the brain is modified by
pruning, input from the developing sensory organs, various
hormones and different kinds of fluctuations. Such
influences give the brain a ‘final’ unique structure that is
not possible to predict from the genes alone. The neural
network structures of the brain are thus determined both by
genetic order, and by more or less random effects, resulting
in an undetermined and unpredictable final product.
Learning that occurs throughout the life modifies the neural
structures continuously, and provides adaptation at an
intermediate time scale. At the shortest time scale, the
neurodynamics of the brain provides rapid adaptation to
fast changes in the (external and internal) environment.

How is it possible to be sensitive and flexible, adapting to
environmental changes at different time scales, while
maintaining necessary stability? In some cases, it may be
important to be sensitive and react quickly to small changes
in the (external or internal) environment. In other cases, it
is important to be stable and nonreacting to insignificant
fluctuations, perhaps of the same magnitude as the small
‘signals’ in the first case. How can the system change its
sensitivity depending on circumstances? How much struc-
tural changes (primarily damages owing to ‘pruning’ of
synapses and decay of neurons) can a neural network take
before its function is impaired?

The evolutionary and genetically determined structure of
the neural network is given in the model by the initial
connectivity matrix, which mimics the three-layered struc-
ture of paleocortex. This overconnected structure, with one
layer of excitatory network units (‘pyramidal cells’) and two
layers of inhibitory network units (‘interneurons’) provides
the basis for the oscillatory and chaotic-like dynamics
observed in these structures. Figure 1 shows the oscillatory
and chaotic-like dynamics of such structures as observed
with EEG. The top trace shows the EEG of rat olfactory
cortex, while the bottom trace shows simulated EEG using
our cortical model. In Figure 2, the network dynamics is
shown for two cases of external input, as a strong and a
weak shock pulse, respectively, is applied to the input side
of the network. The top traces are experimental data, and
the bottom traces are computer simulations.

It is clear from the simulations that oscillatory or complex
dynamics can provide a means for fast response to an
external input, such as a sensory signal. If sensitivity to
small changes in the input is desired, a partially chaotic-like
dynamics could be optimal, but a too high sensitivity should
be avoided. Oscillations can also be used for enhancing

weak signals, and by ‘resonance’, large populations of
neurons can be activated for any input. In addition, such
‘recruitment’ of neurons in oscillatory activity can eliminate
the negative effects of noise in the input, by cancelling out
the fluctuations of individual neurons. Noise can, however,
also have a positive effect, which we will return to shortly.
Finally, from an energy point of view, oscillations in the
neuronal activity should be much more efficient than if a
static neuronal output (from large populations of neurons)
was required.

Neuromodulation and Internal Noise

In order for the system to make use of a rich variety of
dynamical states, there has to be some kind of regulatory or
control mechanisms. Many factors influence the dynamical
state of brain structures, for example, the excitability of
neurons and the synaptic strengths in the connections
between them. A number of chemical agents act on these
neural properties. Such agents, for example, ACh and
serotonin (5-HT), can change the excitability of a large
number of neurons simultaneously, or the synaptic
transmission between them. ACh is also known to increase
the excitability by suppressing neuronal adaptation, an
effect similar to that of increasing the gain in general (see
Liljenström and Hasselmo, 1995, and references therein).

The concentration of these ‘neuromodulators’ is directly
related to the arousal or motivation (or mood) of the
individual, and can have profound effects on the neural
dynamics and on memory functions (Freeman, 2000). For
example, ACh increases the oscillatory activity in the
olfactory cortex and in brain slices of hippocampus. In
addition, low levels of ACh have been found to accompany
memory impairment in Alzheimer’s syndrome (see Liljen-
ström and Hasselmo, 1995, and references therein).

The frequencies of the network oscillations depend
primarily upon intrinsic time constants and delays, as
given by the experimental data, whereas the amplitudes
depend predominantly upon connection weights and gains,
which are under neuromodulatory control, and have to be
tuned. Implementation of these neuromodulatory effects in
the model caused changes analogous to those seen in
physiological experiments. For example, a similar result as

Figure 2 Comparison of experimental data from rodent olfactory
cortex (top; data courtesy WJ Freeman) with simulated data using our
neural network model (bottom). The two top experimental traces are
(left) field potential evoked by a large amplitude pulse to the lateral
olfactory tract, and (right) field potentials evoked by a weak pulse.
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that of Figure 2 can be found for different levels of
neuromodulation, and with a constant strength of the input
pulse. A damped oscillatory response is the result of high
neuronal excitability, corresponding to high levels of
neuromodulation (ACh), and implemented as a high Q
value in the input–output function, Equation (2), or a small
a value in Equation (3).

In particular, ‘cholinergic’ increase in excitability and
suppression of synaptic transmission could induce theta
(and/or gamma) rhythm oscillations within the model, even
when starting from an initially quiescent state with no
oscillatory activity. Figure 3 shows how different oscillatory
modes can be induced by neuromodulatory control, which
involves increasing gain and decreasing connection weights.
The activity evolution of one arbitrarily chosen excitatory
network unit is shown for three different levels of ‘ACh’: (a)
low, (b) intermediate, and (c) high.

We have also used the model to simulate the neuromo-
dulatory effects on learning and associative memory tasks.
When storing and retrieving activity patterns, the model
gives point attractors and limit cycle attractors intermit-
tently as Q increases. When a particular pattern was learnt
with Qo10.0 it was stored as a point attractor memory
state. If learning instead was performed with 10.0pQp13.0,
the pattern was stored as a limit cycle. With 13.1pQp15.4,
we obtained point attractors, and with 15.5pQp30.0 again
limit cycles. Different, but overlapping, patterns were
presented either as constant or as oscillatory inputs and
stored as point attractor or limit cycle memory states. The
simulation results showed that an oscillatory response
typically gives a much shorter recall time than a constant
activity. For example, the convergence time to a limit cycle
memory state could be almost half as long as to a point
attractor state, when the same degraded input pattern was
used for recall. The recall time (convergence time) can be
reduced further if larger Q values are used for learning and
recall (Liljenström, 1995, 1997; Liljenström and Wu, 1995).

External or intrinsic fluctuations are usually damped and
‘ignored’ by the system, but, in some cases, they may be
amplified and have an effect at a macroscopic scale.

Simulation results show that noise, as well as neuromodu-
latory effects, can induce global network oscillations and
reduce recall time. In fact, consonant with stochastic
resonance theory (Bulsara et al, 1991; Mandell and Selz,
1993; Anishchenko et al, 1993), the rate of information
processing, which in this case is the rate of convergence to a
near limit cycle memory state, can be maximized for
optimal noise levels (Liljenström and Wu, 1995).

Under certain circumstances, a small number of ‘noisy’
network units (with a high intrinsic random activity) is
sufficient to induce global coherent oscillatory activity in a
network with primarily ‘silent’ units (see Figure 4). The
onset of global oscillatory activity depends on, for example,
the noise level, the number and density of the noisy units,
and the duration of the noise activity. The location and
spatial distribution of these units in the network is also
important for the onset of oscillations. If the noisy units are
separated beyond a certain distance, or if the noise level is
too low, no oscillations occur. Likewise, no transition to
global oscillations occurs if the noise ‘frequency’ is too low.

Synaptic Modification and Network Pruning

As discussed above, the stability and flexibility of a neural
network is largely determined by its connectivity. In
general, an extensive connectivity with a certain degree of
randomness ensures stability. Modifications of network
connections provide flexibility. Learning and (associative)
memory is presumably based on synaptic modifications,
which include both growth and pruning of the neural
networks of the brain. Such structural changes occur all the
time during the lifetime of the individual. We simulate a
continuous learning of our neural network model by a
learning rule that modifies the connection weights con-
tinuously (in principle).

In Figure 5, we show how the model system learns and
recalls input patterns continuously by means of near-limit
cycle attractors. Here, 500 ms is allowed for the system to
respond to (recognize) any particular input pattern, but if
that pattern does not match any of the previously encoun-
tered (stored) patterns, the system starts to store (learn) the
new pattern as a new near-limit cycle attractor (memory)
for another 500 ms. In the figure, the large, central system
trajectory corresponds to the ‘attempt’ to converge to one of
the stored memories, represented by a near-limit cycle
attractor. The narrow system trajectory to the right in the
figure corresponds to the learning of the current input
pattern as a new near-limit cycle attractor when conver-
gence to ang stores pattern failed. (The time series for one
arbitrary excitatory unit is plotted against that of another.)

The effects of neuronal pruning are studied by removing
certain connection weights in the neural network model.
The rule for the adjustments can be described as: ‘prune the
weights that are not changing, and are below a specific
pruning limit’ (see Figure 6). The ‘pruning limit’ is
calculated as the mean of the weight strengths plus a value
that is determined from the input parameters.

In order to compare the results of different simulations, a
convergence measure for the system was used. The
convergence is a number between 0.0 and 1.0, telling how
good the recognition of a distorted pattern is. It is obtained
from the scalar product between the correct (learnt) pattern

Figure 3 Different oscillatory modes can be induced by neuromodu-
latory control: increasing gain and decreasing connection weights. The
activity evolution of one particular (arbitrarily chosen) excitatory network
unit is shown for three different levels of ‘cholinergic’ action: (a) low levels,
(b) intermediate levels, and (c) high levels.
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and the pattern that the system produces given a distorted
version of the correct pattern. If these patterns match
completely, the convergence would be 1.0.

In the convergence plot in Figure 7, there are four
different graphs, each representing the convergence of a

distorted pattern. The time course in the plots is from 1000
to 2000 ms. Before that, the system was taught the four
original patterns, one at a time. Then, beginning at
t¼ 1000 ms, a distorted version of the first pattern was
presented to the system for 200 ms. At every time step, the
convergence of the distorted pattern was calculated for each
learnt pattern. The uppermost of the four graphs is the
convergence measure for the first distorted pattern, and the
graphs below show how that pattern matches the three other
learnt patterns.

A comparison of the plots in Figure 7a (no pruning) and
Figure 7b (pruning) shows that with pruning the peaks of
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Figure 4 Noise-induced global network oscillations. The figure shows one noisy excitatory network unit (middle trace) and two nonactive units. The
noise or ‘spontaneous activity’ of certain network units is here only appearing for a short period, 400ms, which results in an onset of global oscillations about
500ms after that period.
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Figure 5 ‘Continuous’ learning and recall with the cortical neural
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Figure 6 The pruning limit is calculated as the mean of the weight
strengths plus a value determined from the input parameters. Connections
that fall below the limit line are removed.
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the convergence graphs are slightly lower than in the case
with no pruning. The amplitude of the oscillations is also
varying less when pruning is turned on, while the frequency
stays the same. When the mean of the convergence was
calculated, then in general, the resulting value for the
simulation with pruning turned out to be higher. Another
result of pruning was that the recall of a memory was more
distinct, that is, the overlap with other memories was
reduced.

Most of the simulations were run with four patterns, but
up to 20 patterns have been used. The pattern density was
mostly about 20% (ie around 50 of 256 cells were turned
‘on’). Pattern densities of 10 and 50% were also tested, but
the results of these simulations were about the same. The
convergence was slightly poorer than with 20% but the
relation between the pruning and nonpruning simulations
stayed the same. Most of the simulations were run with a
distortion level of 25% (ie 75% of the pattern was the same
as the original). Distortion levels of 10 and 50% were also
tested. As suspected, the convergence was best for the 10%

distortion, poorer for 25%, and worst for 50%. The pruning
result for the 10% distortion was better than for the
nonpruning result (mean convergence). As discussed above,
the result for pruning with 25% distortion was slightly
better than without pruning. For the 50% distortion, the
pruning and nonpruning results were about equal.

In order to measure some kind of an ‘energy effect’ of
pruning, we introduced an energy measure based on the
idea that the more neurons involved in learning and
recognition, the more energy that would be consumed.
Therefore, a simple energy term would be the sum of the
entire weight matrix, since all elements wijX0. Thus, the
system would consume less energy if there were fewer
connections. This energy term was used to find the energy
usage of the system both with pruning and without. In the
graph in Figure 8, the values have been normalized (0.0 is
the minimum energy and 1.0 is the maximum energy).
There are clear differences between pruning and nonprun-
ing. After the initiation period of about 25 ms, the energy of
the pruning simulation dramatically decreases and stays low
for the rest of the simulation, whereas in the nonpruning
simulation the energy increases. At the end of the
nonpruning simulation, the (relative) energy is about 58%
while it in the pruning simulation is about 1%.

Figure 9 shows the network activity, with and without
pruning, with activity levels coded as the height above a
given plane. As can be seen from the figure, the peaks of the
activity levels for the simulation with pruning were more
equal in height. In other words, the synchronization was
better in the pruning simulations than in the nonpruning
ones.

In summary, simulations with pruning showed that the
system is extremely stable. It was possible to prune away
more than 95% of the connection weights and still get good
results. In addition, when pruning was applied, synchroni-
zation of network activity was increased, and the energy
consumption (as defined above) was greatly reduced. This
was because a great number of connection weights were
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Figure 7 The convergence measure without pruning (a) and with
pruning (b). The four graphs each represent the convergence of one of the
four distorted patterns presented to the system for 200ms at four
successive times (see text for a detailed explanation).
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removed, which in turn made the simulations some 10%
faster. Further, the recall of memories was improved, in the
sense that the recognition of the input patterns was more
distinct and accurate. Although the peaks were higher
without pruning, the mean of the convergence was better
with pruning.

DISCUSSION

We have used a computational model of the three-layered
paleocortex to investigate the relations between structure,
dynamics, and functions of cortical neural networks. In
particular, we have used this model to address the stability–
flexibility dilemma of neural systems, assuming a close
relation between neural processes and mental processes and
disorders.

Apparently, a certain amount of disorder is beneficial to
the system; too much order can be detrimental (eg getting
stuck in a limit cycle attractor, corresponding to a repetitive
cognitive or motor behavior). Our computer simulations
support the view that, with an initial chaotic-like state,
sensitive to the input, the system can rapidly converge to an
attractor memory state. It should be important to avoid
getting stuck in any stable limit cycle (or other) attractor
state, and a chaotic dynamics could provide the necessary
aperiodicity. At a higher level, it could be responsible for the
brain’s capacity to generate novel activity patterns, corre-
sponding to its internal self-generated (‘creative’) thought
processes (Skarda and Freeman, 1987). Several other roles for
chaos in neural systems have been suggested (see eg Tsuda,
1991; Babloyantz and Lourenco, 1996; Arbib et al, 1997).

Further, the computer simulations show that noise can
induce global synchronous oscillations and shift the system
dynamics from one dynamical state to another. This in turn
can change the efficiency of the information processing of
the system. We also demonstrated that system performance
can be maximized at an optimal noise level, analogous to

the case of stochastic resonance. Thus, in addition to the
(pseudo-)chaotic network dynamics, the noise produced by
a few (or many) neurons could be used for making the
system flexible, increasing the responsiveness of the system,
and for avoiding the system to get stuck in any undesired
oscillatory mode.

The dynamical state of a neural system determines its
global properties and functions. For example, cortical
oscillations (in particular the 40 Hz oscillations) seem to
play a role in cognitive functions, including segmentation of
sensory input, learning, attention, and consciousness (Eck-
horn et al, 1988; Gray et al, 1989; Crick and Koch, 1990;
Gray, 1994). The findings of zero phase stimulus-invoked
synchrony between (visual) cortical neurons far apart has
been suggested to solve the so-called binding problem: that
an object is perceived as a whole, in spite of its different
aspects being represented by different sets of neurons
(Gray, 1994). Neurodynamical control should thus be
crucial for the survival of the individual (or for an efficient
functioning of an artificial autonomous system). It could
result in a shift in the balance between sensitivity and
stability of the system.

An efficient neural information processing supposedly
requires an appropriate balance between flexibility and
stability of the system. Ideally, the balance can shift
depending on internal and external circumstances. Our
computer simulations show that a regulated complex
neurodynamics, which can shift its balance between
sensitivity and stability, can result in an efficient informa-
tion processing. A high interconnectivity, with extensive
long-range excitatory connections, and more local inhibi-
tory connections, can be extremely robust to network
pruning and external or internal fluctuations. An oscillatory
dynamics, resulting from a proper balance between excita-
tion and inhibition, is another factor that provides both
flexibility and stability to the system. In addition, such a
dynamics is more energetically advantageous than a non-
oscillatory dynamics. A pruned network is also more
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Figure 9 Snap shots of height-coded activity levels from a simulation without pruning (left) and with pruning (right).
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efficient in terms of energy usage (less synapses involved)
and network activity levels, and it gives a more accurate
learning/recall. However, pruning results in a less flexible
network, where fewer patterns can be stored, as the number
of modifiable connections is reduced.

Hence, all of the mechanisms discussed above result in a
more efficient information processing, primarily expressed
as a faster and/or more accurate response to an external
input pattern. For example, neuromodulatory control that
increases neuronal excitability and suppresses synaptic
transmission can enhance system performance by reducing
the recall time, or by increasing fidelity through the
separation of input pattern activity. It seems that the
most efficient information processing in this system is
obtained when it initially has a chaotic-like dynamics,
which converges to a near-limit cycle attractor in res-
ponse to external stimuli. The rate of convergence to a
memory attractor can be increased by various mechanisms,
such as neuromodulatory, synchronizing, or pruning
effects.

What is the significance and relevance of this kind of
computational models and simulations for clinical and
experimental neuroscience and psychiatry? To the extent
that neural processes are closely linked to cognitive
functions and mental processes, and that computational
methods can successfully be used to model neural
structures and processes, these methods should also be
useful tools in understanding higher brain (mal-) functions.
In particular, it is reasonable to believe that neural stability
and flexibility is also reflected, at least to some extent, in the
stability and flexibility at higher levels of brain function.
Hence, an imbalance between stability and flexibility, or
between order and disorder, at the neural level, is likely to
have effects at the mental level, possibly linking to mental
disorders.

For example, with reference to the pruning hypothesis
(Feinberg, 1982; Saugstad, 1994; Siekmeier and Hoffman,
2002), the pruning effects that we found with our computer
simulations could thus point at a shift in the balance
between stability and flexibility of the neural networks of
the brain, that possibly could be reflected in a similar shift
at a cognitive/mental level. It is also conceivable that a
suboptimal timing of the extensive pruning process that
occurs during development could well have an effect on the
stability–flexibility balance of the mental processes in later
stages of life.

Even though it is difficult with the current model to make
any conclusions about mental processes and disorders,
computer models are likely to be used more extensively in
the future, as a complement to experimental and clinical
methods. Indeed, our modelling efforts have shown that
problems such as the stability–flexibility dilemma for neural
systems can be addressed and studied with computational
methods. The kind of computational models we have used
here, are far too simple to be directly applied in clinical
neuroscience and psychiatry, but the results could possibly
point at likely solutions and guide further experimental and
clinical approaches. A greater understanding of the relation
between neural and mental processes, as well as a further
development and elaboration of computational models, is
needed before we can make any successful use or prediction
of such methods.
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