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World Structure and the Expansion of the Universe 

By Prof. E. A. MILNE, F.R.S. 

r]lHE most distant nebulro appear to be receding 
..L from us, and the velocity of recession is pro

portional to the distance. The most commonly 
accepted explanation of this phenomenon is that 
due to Friedman and Lemaitre. The principle of 
their explanation is that it is possible to describe 
the observed facts by assigning fixed co-ordinates 
to a distant nebula in a curved space-time in which 
the metric involves the timet. The spatial interval
distance between the nebula and the observer is 
then a function of t. The difficulties of this ex
planation are (1) that it involves the existence of 
' cosmic time ' and restores the distinction between 
time and space abolished by Minkowski; (2) that 
it has been impossible to explain why ' space ' is 
expanding and not contracting. This theory is a 
development of the remarkable pioneer theories of 
Einstein and de Sitter, which contemplated static 
metrics for space-time. De Sitter's world, it is 
true, placed time on the same footing as space, but 
Einstein's cylindrical world introduced " cosmic 
time". More recently (Proc. Nat. Acad. Sci., 18, 
213; 1932), Einstein and de Sitter have concluded 
that at the present moment it is impossible to 
determine the algebraic sign of the curvature of 
'space ', and that the facts of observation can be 
described by assigning fixed co-ordinates to a 
distant nebula in a quasi-Euclidean space expand
ing with the time. 

A much simpler explanation of the facts may be 
obtained as follows. The explanation abandons the 
curvature of space and the notion of expanding 
space, and regards the observed motions of dis
tant nebulro as their actual motions in Euclidean 
space. 

Consider a spherical region of Euclidean space, 
occupied at timet =0 by a uniform spatial distribu
tion of moving particles, moving in random direc
tions with velocities u, v, w, distributed according 
to a law f(u, v, w) du dv dw. The density is sup
posed to be so small that collisions do not occur 
and forces of interaction are supposed negligible. 
Outside the sphere (say of radius r 0) let space be 
empty. Then the outward moving particles will 
move into the empty space outside and the faster 
particles will gain on the slower. At any time t 
the fastest moving particles will form an expanding 
spherical frontier, followed by the next fastest, 
and so on. The inward moving particles will 
traverse the sphere of radius r 0, emerge at the other 
side, and then move outwards. Thus at any suffi
ciently large time t all the particles moving with a 
given speed V will be found between the spheres of 
radii Vt-r0 and Vt+r0• Weseeatoncethatafter 
the lapse of sufficient time, all the distant particles 
will have velocities of recession; and the mean 
velocity of recession at any distant point will be 

• Synopsis of a paper read at a colloquium at Wadham College, 
Oxford, on June 7, 1932. 
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ultimately proportional to the distance, the con
stant of proportionality being simply 1ft. The 
interior of the original sphere, and indeed all space 
inside the distant moving portion, remain occupied 
throughout. For example, near the centre of the 
original sphere, after a long timet only slow-moving 
particles will be found, namely, those which started 
inwards from the original frontier with sufficiently 
small velocities. The density everywhere decreases 
with the time, and the particles sort themselves out 
in velocity, the sorting becoming more perfect the 
larger the velocity. 

Clearly the restriction to an initially uniformly 
occupied sphere is unnecessary. Any initial density 
distribution which decreases sufficiently rapidly 
with distance will give rise to the same effect. 
This is true even if the initial distribution fills 
infinite space. The only difference is that every 
small element of volume always contains a few 
slow-moving particles, even after a long time; 
but the sorting goes on. The essential aspect of 
the situation is that we are dealing with an un
enclosed system. 

The above explanation is applicable at once 
to the system of nebulro. The fastest moving 
ones will have velocities exceeding the velocity 
of escape against gravity, and will ultimately 
pursue curves indistinguishable from their linear 
asymptotes. 

This common-sense explanation has many ad
vantages in addition to that of rendering unneces
sary the introduction of a curved ' space ' and a 
non-static metric. It shows at once that the 
system is necessarily an expanding system after 
a sufficiently long time. If at any instant all the 
velocities are imagined to be reversed in direc
tion, the system appears to contract to its con
figuration at time t =0 and then expands again. 
Moreover, if at time t = 0 all the velocities are 
reversed, the system still expands. The instant 
t =0 affords a natural origin of time for the 
observer recording the distribution-laws. From 
this instant evolution proceeds in an inevitable 
direction, namely, in the direction of expansion. 
We may say that creation and uni-directional 
evolution are brought into a single mathematical 
scheme. 

It is quite unnecessary, however, to introduce a 
'cosmic time'. Let an observer count the par
ticles with velocities inside the range u to u + du, v 
to v + dv, w to w + dw, and arrive at the law 
f(u, v, w) du dv dw. Let a second observer, moving 
with uniform velocity V0 with respect to the first, 
make a similar enumeration, and suppose he arrives 
at the law f 1{u, v, w) du dv dw. We may inquire 
what must be the actual distribution-law in any 
frame so that f=fv that is, so that the velocity
pictures of the universe recorded by the two ob
servers are identical. Neglecting the curvatures 
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of the paths, we find that the distribution-law 
must be 

B c du dv dw 
(c2 -u2 -v2 -w2)2 

where B is a pure number and c is the velocity of 
light. This permits a continuous distribution of 
velocities up to c. Since actual recession speeds 
have been recorded up to one-fifteenth of that of 
light (19,700 km.fsec., see Humason, Mt. Wilson 
Contributions , No. 426, 1931), and since still higher 
velocities may be expected, there seems nothing 
fantastic about this distribution-law. 

Suppose now two observers start at the centre 
x = 0, y = 0, z = 0 of the initial spherically sym
metrical distribution at time t = 0, with relative 
velocity V0 with respect to one another. We may 
inquire what must be the spatial distribution of 
particles such that the universe will for ever appear 
the same to each observer. This requires a more 
complicated analysis, for the two observers will 
disagree as to what is meant by simultaneity. To 
solve this problem it is necessary to introduce the 
concept of the intensity I of world-lines at a point 
in time-space in a given direction. This is defined 
as the number of world-lines per unit solid angle 
in 4-space per unit 3-space cross section normal to 
the direction of the world lines. The conditions 
that any proposed function I =F(x, y, z, u, v, w, t) 
shall represent a concourse of permanent objects 
are that (I) F shall be invariant for a Lorentz trans
formation, (2) F shall be constant along a world
line ; the second condition is readily shown to 
be equivalent to the satisfaction of Boltzmann's 
equation in gas-kinetic theory. When F is deter
mined and we return to the co-ordinates x, y, z, t 
of any particular observer measured from the 
natural origin of time-space, the distribution law 
is found to be 

c2 A du dv dw dx dy dz 
(c2- (c2t2- };u2)]i 

which may also be written in the form 

c2 A du dv dw dx dy dz 
(c2- 2:u2)[ c2};(x- ut)2- L{v(z- wt) - w(y- vt)}2]1 

This shows at once that for given x 2 + y2 + z2 and 
given u2 +v2 +w2, the density is a maximum (for 
sufficiently large t) when u : v : w = x : y : z, that is, 
it gives the recession predominance. It also gives 
the velocity-distance correlation for t large. Inte
grated over the complete spatial solid-angle for 
3-space it gives for time t = 0 the distribution-law 

41Tc A du dv dw dr 
(c2- r 

showing that the density-distribution at any time t 
may be derived as the natural expansion of an 
initial distribution* with a density law p oc lfr3 • 

This of course gives a congestion of matter at the 
origin at time t = 0, and expanding spheres of 

• For 1=0, the last fonnula gives the distribution between the radii 
r n.nd r+dr. But at t=O, at any given point r, the velocities are pre
dominantly tangential. 
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singularities at any other time. This in turn shows 
that it is necessary to introduce gravitation and so 
curvature of world-lines as a second approximation. 
But the density law p oc lfr3 gives a gravitational 
potential tending to a constant at large distances, 
and so preserves the analysis as representing the 
uniform rectilinear motions at great distances. 
Presumably a Gaussian metric is required for the 
vicinity of the space-time origin, but it tends to the 
Galileian form at great distances. 

According to these very elementary considera
tions, which only involve the principles of the 
special theory of relativity, the continuum of time
space is occupied at large distances from the natural 
space-time origin by a hyper-complex of world
lines having spherical symmetry about the space
time origin. There is no such thing as cosmic 
time. But at each point of space-time there is a 
unique direction in which the space-time origin 
lies. Every observer sees the same velocity dis
tribution at great distances. Every observer can 
regard himself as the centre of the universe by 
choosing his time axis so as to point away from the 
time-space origin-in other words, by choosing the 
motion of his frame of reference so that it is at rest 
with respect to the vector average of the motions 
in his immediate neighbourhood. The world is 
then perfectly ego-centric at all points, and the 
moving picture of the world as made by any one 
observer is identical with that made by any other 
observer. 

The principle of relativity in its original form 
asserted that all frames of reference are equivalent 
for the description of the laws of Nature. The 
foregoing ideas rest on an extension of the prin
ciple to the assertion that the world itself, when 
local irregularities are disregarded, must appear to 
have the same structure to all observers ; in other 
words, the principle of relativity is extended from 
the laws of Nature to the phenomena occurring in 
Nature. 

We cannot observe space. We observe point
events. But we can recognise the continued exist
ence of material objects, and hence we can arrange 
these observed point-events in world-lines. It 
seems best to avoid the phrase 'the structure of 
space' or of' space-time', and consider simply the 
structure of the hyper-complex of world-lines which 
can be reconstructed from our observations. The 
preceding analysis discusses the simplest ideal 
system of world-lines that is compatible with 
the observed permanence of material objects and 
satisfies the extended principle of relativity. It 
is not difficult to generalise the analysis so as to 
describe a hyper-complex of curved world-lines and 
to connect the distribution of intensity with the 
distribution of curvature, and thus to make some 
progress towards the introduction of gravitation 
even inside the limits of Galileian space-time. But 
these developments are deferred to another occa
sion. I conclude by emphasising the very simple 
explanation of the expansion of the universe of 
material objects obtained by examining the kine
matics of an unenclosed system with central con
densation. 
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