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The widespread and abundant distribution of P2Y receptors in the mammalian brain suggests important functions for these receptors in

the CNS. To study a possible involvement of the P2Y receptors in the regulation of fear and anxiety, the influences of the P2Y1,11,12
receptor-specific agonist adenosine 50-O-(2-thiodiphosphate) (ADPbS), the P2X1,3 receptor agonist a,b-methylene ATP (a,bmeATP),

the unspecific P2 receptor antagonist pyridoxalphosphate-6-azopheny l-20,40-disulfonic acid (PPADS), and the specific P2Y1 receptor

antagonist N6-methyl-20-deoxyadenosine-30 ,50-bisphosphate (MRS 2179) on the elevated plus-maze behavior of the rat were

investigated. All tested compounds were given intracerebroventricularly (0.5 ml). ADPbS (50 and 500 fmol) produced an anxiolytic-like

behavioral profile reflected by an increase of the open arm exploration. The anxiolytic-like effects were antagonized by pretreatment

with PPADS (5 pmol) or MRS 2179 (5 pmol). Both compounds caused anxiogenic-like effects when given alone. Furthermore, the

anxiolytic-like effects of ADPbS could be antagonized by pretreatment with the nitric oxide synthase (NOS) inhibitor Nw-nitro-L-arginine

methyl ester (L-NAME). In addition, the anxiogenic-like effects of PPADS were reversed by the pretreatment with L-arginine (500 pmol),

which is the natural substrate for NOS, but not by D-arginine (500 pmol), which is not. Immunofluorescence staining revealed the

presence of P2Y1 receptors on neurons in different brain regions such as hypothalamus, amygdala, hippocampus and the periaqueductal

gray. Furthermore, the colocalization of P2Y1 receptors and neuronal NOS (nNOS) on some neurons in these regions could be

demonstrated. The highest density of P2Y1- and nNOS-immunoreactivity was detected in the dorsomedial hypothalamic nucleus. Taken

together, the present results suggest that P2Y1 receptors are involved in the modulation of anxiety in the rat. The anxiolytic-like effects

after stimulation of P2Y1 receptors seem to be in close connection with the related nitric oxide production.
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INTRODUCTION

In previous studies, it has been demonstrated that stimula-
tion of P2 receptors, which belong either to the P2X ligand-
gated ion channel family (P2X1–7 subtypes) or to the P2Y G
protein-coupled receptor family (P2Y1,2,4,6,11,12 subtypes)
(Ralevic and Burnstock, 1998; Bürnstock, 2001), is involved
in the regulation of locomotion as well as in the expression
of sensitization and reward (Kittner et al, 2001; Krügel et al,
2001a). It has been shown that the open field behavior after
intra-accumbal injection of the adenosine 50-triphosphate
(ATP) analog 2-methylthio ATP (2-MeSATP) is character-

ized by an extended period of novelty-induced locomotion
and additionally, after a latency time, by an increased
exploration of the inner open field areas indicating
anxiolytic-like properties of the P2 receptor agonist (Kittner
et al, 1997). The aim of the present study was to clarify
whether P2 receptors are involved in the regulation of fear
and anxiety. For this purpose, the influence of the P2Y1,11,12

receptor agonist adenosine 50-O-(2-thiodiphosphate)
(ADPbS), the P2X1,3 receptor agonist a,b-methylene ATP
(a,bmeATP), the nonspecific P2 receptor antagonist
pyridoxalphosphate-6-azopheny L-20,40-disulfonic acid
(PPADS), the P2Y1 receptor-specific antagonist MRS 2179,
and the combination of the respective agonists and
antagonists on the elevated plus-maze behavior of
rats was investigated after intracerebroventricular (i.c.v.)
injection.
After the stimulation of P2Y1 receptors by the physiolo-

gical agonist adenosine 50-diphosphate (ADP) (You et al,
1997) as well as by its analog ADPbS (Malmsjö et al, 1999;
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Rump et al, 1998), an enhanced formation of the free radical
gas nitric oxide (NO) was observed. NO is known to be
synthesized from L-arginine and oxygen by NO synthase
(NOS) in the presence of NADPH, and plays a role in
various signal transduction processes in the CNS. Three
distinct isoforms of NOS have been identified: neuronal
NOS (nNOS)Fthe isoform predominating in neuronal
tissue, inducible NOS (iNOS)Fthe inducible isoform found
in many cells and tissues, and the endothelial NOS
(eNOS)Fthe isoform located in vascular endothelial cells
(Alderton et al, 2001). It has been demonstrated that
extracellular ATP induces a rise in cyclic GMP level, which
is caused by Ca2+-activated formation of NOS (Reiser,
1995). Therefore, any interaction between the P2 receptor-
mediated signaling pathway and the NO system is of
particular interest. There is growing evidence that NO is
involved in the regulation of anxiety, although some
controversial results have been reported. On the one hand,
the NOS inhibitor Ng-nitro-L-arginine (L-NOARG) abolished
the anxiolytic-like effects of NO (Caton et al, 1994) as well
as of chlordiazepoxide (Quock and Nguyen, 1992), and the
NOS inhibitor Nw-nitro-L-arginine methyl ester (L-NAME)
produced anxiogenic-like effects in the rat elevated plus-
maze (Vale et al, 1998). On the other hand, an anxiolytic-
like action of L-NAME has also been reported in the same
model (Volke et al, 1995).
The present study aimed to clarify whether the P2Y1

receptor-mediated effects on anxiety are correlated with an
enhanced availability of NO. Therefore, the influence of L-
NAME and L-arginine on the P2Y1 receptor-mediated effects
on anxiety was studied. To clarify the possibility of a
colocalization of P2Y1 receptors and nNOS at the same
neurons as a condition for a direct relation between P2Y1

receptor stimulation and NO release, immunohistochemical
studies were carried out in relevant brain regions, for
example, the hypothalamus, amygdala, hippocampus, and
periaqueductal gray, which are involved in the regulation of
fear and anxiety.

MATERIALS AND METHODS

Animals

Adult male Wistar rats (WIST/Lei) weighing 300–320 g were
used. The animals were housed under standardized
humidity, temperature, and lighting conditions with a 12-
h/12-h light/dark cycle (lights on at 7.00 am) and had free
access to water and food. The animals were housed four or
five per cage before and individually after surgery. The
experiments were approved by the Committee on Animal
Care and Use of the relevant local governmental body
according to the German guidelines (BGBl.I p.1105) revised
in 1998. All efforts were made to minimize the number of
animals used and their suffering.

Drugs

All drugs were diluted and applied in artificial cerebrospinal
fluid (aCSF; 126mM NaCl, 2.5mM KCl, 1.2mM NaH2PO4,
1.3mM MgCl2, and 2.4mM CaCl2; pH 7.4). ADPbS and
a,bmeATP were obtained from Sigma-Aldrich (Chemie
GmbH, Deisenhofen, Germany). (L-NAME), L- and D-

arginine were purchased from Tocris Cookson Ltd, (Bristol,
UK) and N6-methyl-20-deoxyadenosine-30,50-bisphosphate
(MRS 2179) from RBI (Natick, MA, USA).

Surgery and i.c.v. Injections

Rats were anesthetized with a combination of ketamine
hydrochloride (100mg/kg, i.p.; Ketanests, Ratiopharm,
Ulm, Germany) and xylazine hydrochloride (5mg/kg, i.p.;
Rompuns, Bayer, Leverkusen, Germany). Following place-
ment in a stereotaxic frame, they were implanted with a 24-
gauge guide cannula (bioflow catheters; Vygon, Ecouen,
France). To avoid a permanent injury of the ventricle, the
implanted guide cannula was placed immediately above it.
The stereotaxic coordinates according to Paxinos and
Watson (1986) were: AP¼�1mm rostral to bregma,
ML¼+1.5mm lateral to the sagittal suture, DV¼�2.5mm
mm below the surface of the hemisphere. The cannula was
embedded in a socket mounted on the skull in dental acrylic
cement (Technovits 3040; Heraeus Kulzer, Wehrheim,
Germany) and additionally fixed by two stainless-steel
screws. After surgery, the animals were treated with benzyl
penicillin (200.000 IE, i.m.; Retacillin compositums,
Jenapharm, Jena, Germany) for antibiotic prophylaxis and
were allowed to recover for 6 days by individually housing
before the maze exposure. The individually harbored
animals showed only a slight, but no significant, tendency
to higher anxiety-like behavior in comparison with the
grouped, housed control animals.
The i.c.v. injections were made in freely moving rats,

which were habituated to the injection procedure 2 or 3
days before the beginning of the experiments. Injection
cannulae (26 gauge) connected to 10 ml syringes via PE-20
tubing were inserted into the guide cannula and protruded
1.5mm beyond its end to reach the ventricle. All
compounds were infused in a volume of 0.5 ml over 3min
using a microinfusion pump (TSE GmbH, Bad Homburg,
Germany). The injection cannula was left in place for an
additional minute after the application to allow diffusion of
the solution. The purinergic agonists ADPbS and
a,bmeATP, the P2Y1 receptor antagonist MRS 2179 as well
as L- and D-arginine were administered 5min before the
maze performance. The P2 receptor antagonist PPADS and
L-NAME were injected 15 and 30min, respectively, before
the start of the maze exposure. Animals that received only
antagonists or agonists got the vehicle as second injection.
For histological evaluation, the animals received an i.c.v.
injection of methylene blue and were killed by decapitation
after completion of the experiments. Only rats showing the
appropriate injection site were used for data analysis.

Elevated Plus-Maze

The elevated plus-maze is a widely used and extensively
validated animal model of anxiety based on the natural
aversion of rodents for open spaces and on the elevation of
the maze (Handley and Mithani, 1984; Pellow et al, 1985).
The apparatus was made of wood with a black rubber

floor. It consisted of two open arms (50� 10 cm) and two
enclosed arms (50� 10 cm) with walls of 40 cm height,
elevated 50 cm above the ground. The arms of the same type
were opposite to each other, connected by an open central
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area (10� 10 cm). A camera was mounted vertically above
the maze, and the behavior was scored from a monitor in an
adjacent room. The investigation room was illuminated
with a light intensity of 500 lx, resulting in a brightness of
650 lx at the open and 200 lx at the enclosed arms of the
maze. At the beginning of the experiment, rats were placed
in the center of the maze, facing the enclosed arms, and
were observed for 10min. Each animal was tested only once.
Eight rats were tested at each dose for each compound. All
tests were carried out between 0800 and 1300 h. The maze
was thoroughly cleaned between each test. An increase in
the percentage of time spent on the open arms (open� 100/
open+enclosed) and in the percentage of open arms entries
(open� 100/total entries) is interpreted as an anxiolytic-like
response (Pellow et al, 1985), whereas the number of entries
into enclosed arms provides a measure of general activity
(File, 1991).

Double Immunofluorescence

The rats were transcardially perfused under thio-
pental sodium anesthesia with paraformaldehyde (2%)
in sodium acetate buffer (pH 6.5) followed by parafor-
maldehyde (2%)/glutaraldehyde (0.1%) in sodium
borate buffer (pH 8.5). Serial sections (50 mm thick) from
the dorsomedial hypothalamic nucleus, the basomedial
nucleus amygdala, the dorsal hippocampus (Figure 1) as
well as from the periaqueductal gray (not shown)
were obtained by using a vibratome (TSE, Bad Homburg,
Germany) and collected as free-floating slices in 0.1M Tris
(pH 7.6).
P2Y1-immunofluorescence was performed as previously

described (Franke et al, 2001). Briefly, after washing with
Tris buffered saline (TBS, 0.05M; pH 7.6) and blocking with
5% fetal calf serum (FCS) in TBS, the slices were incubated
in an antibody mixture of rabbit anti-P2Y1 receptor
antibody (1 : 1500, SmithKline Beecham Pharmaceuticals,
Hertord shire, UK) and mouse anti-NOS (NOS1, 1 : 1000,
Santa Cruz Biotechnology, Inc., Santa Cruz, CA) with 0.1%
Triton X-100 in 5% FCS in TBS for 48 h at 41C.
Subsequently, the slices were incubated with the two
secondary antibodies Cy3-conjugated goat anti-rabbit IgG
(1 : 800; Jackson Immuno Research) and Cy2-conjugated
goat anti-mouse IgG (1 : 400; Jackson Immuno Research,
Baltimore, USA) in 5% FCS in TBS for 2 h. After intensive
washing and mounting on slide glasses, all stained sections
were dehydrated in a series of graded ethanol, processed

through n-butylacetate, and covered with entellan (Merck,
Darmstadt, Germany). Control experiments were carried
out without primary antibodies.

Confocal Microscopy

The double immunofluorescence was investigated by a
confocal laser scanning microscope (LSM 510, Zeiss,
Oberkochen, Germany) equipped with an argon laser
emitting at 488 nm and a helium/neon laser emitting at
543 nm. The two reaction products were distinguished by
their different fluorescence: nNOS by the green Cy2
immunofluorescence and the P2Y1 receptor subtype by
the red Cy3 immunofluorescence.

Statistics

All results were expressed as means7 SEM (n¼ 8). In
experiments using the elevated plus-maze, the percentage of
time spent on the open arms (open� 100/open+enclosed)
and the percentage of open arms entries (open� 100/total
entries) were calculated for each animal. Additionally, the
number of enclosed arm entries was recorded. To evaluate
statistical differences in the elevated plus-maze experi-
ments, one-way analysis of variance (ANOVA) was used
followed by the Student–Newman–Keuls test for multiple
comparisons. A probability level of po0.05 was considered
to be statistically significant.

RESULTS

Influence of ADPbS on the Rat Elevated Plus-Maze
Behavior

ADPbS had a significant dose-related anxiolytic-like effect,
shown by an increase in the percentage of time spent on the
open arms (F(5,47)¼ 25.6, po0.001) (Figure 2) and the

Figure 1 Schematic representation of the dorsomedial hypothalamus
(DMH), the basomedial amygdala (BMA) and the dorsal hippocampus (for
example the CA3 region) of the rat, characterizing the areas in which P2Y1
receptor/ nNOS double-labelled cells were found.

Figure 2 Means7SEM percentage of time spent on the open arms in
the elevated plus-maze of rats. The rats were tested 5min after i.c.v.
administration of ADPb in various doses and 15min after application of
PPADS in comparison with vehicle (aCSF)-treated controls. **po0.02,
***po0.001 compared with vehicle-treated controls, +++po0.001
compared with the ADPbS (50 fmol) group, Student–Newman–Keuls test
after one-way ANOVA.
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increased percentage number of open arm entries
(F(5,47)¼ 18.5, po0.05) (Table 1). The anxiolytic-like effect
of 50 fmol ADPbS was antagonized by 5 pmol PPADS
(po0.001). PPADS alone produced anxiogenic-like effects,
indicated by a decreased percentage of time spent on open
arms (po0.001) and number of open arm entries (po0.01)
(Table 1). None of the drugs had a significant effect on the
number of enclosed arms entries in comparison with the
aCSF control group (F(5,47)¼ 2.5). Significant differences
were found only at 500 fmol ADPbS in comparison with the
lower doses of 5 and 50 fmol of this compound (po0.05)
(Table 1).
Furthermore, the influence of the P2Y1-receptor antago-

nist MRS 2179 (5 pmol) on the effects of 50 fmol ADPbS
was studied. After pretreatment with MRS 2179,
the anxiolytic-like effects of ADPbS (50 fmol) were abol-
ished (F(3,31)¼ 38.2, po0.001). MRS 2179 (5 pmol) alone
exerted anxiogenic-like properties (po0.001) (Figure 3;
Table 1).

Influence of a,bmeATP on the Rat Elevated Plus-Maze
Behavior

a,bmeATP at all tested doses (0.05, 0.5, and 5 nmol) had no
significant effect on the percentage of time spent on the
open arms (F(3,31)¼ 0.65, p¼ 0.59) (Figure 4) as well as on
the percentage of entries into the open arms (F(3,31)¼ 2.5,
p¼ 0.084) (Table 1). Furthermore, the ANOVA for the
number of enclosed arm entries revealed no significant
effect of a,bmeATP on the general locomotor activity
(F(3,31)¼ 0.27) (Table 1).

Influence of L-NAME on the Rat Elevated Plus-Maze
Behavior

As shown in Figure 5, L-NAME (0.05–5 nmol) produced a
dose-dependent decrease in the percentage of time spent on
the open arms (F(5,47)¼ 19.2, po0.001). The decrease in
the percentage of open arms entries reaches statistical
significance at 5 nmol L-NAME (F(5,47)¼ 6.5, p¼ 0.001).
The number of enclosed arm entries was unaltered at all
tested doses (F(5,47)¼ 1.3, p¼ 0.28) (Table 2). The effects of
L-NAME (0.5 nmol), were abolished by the pretreatment
with L-arginine (0.5 nmol), indicating that the anxiogenic-
like effect of L-NAME is caused by a decreased NO
synthesis. L-Arginine alone (0.5 nmol) caused an increase
in the percentage of time spent on the open arms (po0.05)
(Figure 5).

Figure 3 Means7SEM percentage of time spent on the open arms in
the elevated plus-maze of rats. The rats were tested 5min after i.c.v.
administration of ADPbS and 10min after pretreatment with MRS 2179 in
comparison with vehicle (aCSF)-treated controls. *po0.05, ***po0.001
compared with vehicle-treated controls, +++po0.001 compared with the
ADPbS group, Student–Newman–Keuls test after one-way ANOVA.

Table 1 Mean7 SEM Percentage of Entries into Open Arms
and Number of Enclosed Arm Entries made by Rats Tested in the
Elevated Plus-Maze 5min after i.c.v. Administration of ADPbS,
a,bmeATP, or MRS 2179, respectively, and 10min after PPADS

Treatment % Open arm
entries

Enclosed
arm entries

aCSF 16.17 1.3 16.77 1.2
ADPbS
5 fmol 16.97 1.7 19.37 1.1
50 fmol 21.67 1.9* 16.67 1.5
500 fmol 22.27 1.5* 13.67 1.1+

PPADS 5 pmol 6.67 1.6*** 15.47 1.2
PPADS/ADPbS 5 pmol/50 fmol 7.17 1.8***+++ 14.57 1.1

aCSF 13.97 1.4 15.27 1.8
ADPbS 50 fmol 18.27 1.6* 15.97 2.1
MRS 2179 5 pmol 7.47 2.1* 17.27 2.4
MRS 2179/ADPbS 5 pmol/50 fmol 8.67 2.5*+ 16.57 1.9

aCSF 21.87 1.4 13.57 2.4
a,bmeATP
0.05 nmol 18.27 2.2 11.67 1.9
0.5 nmol 18.97 1.3 12.47 2.0
5 nmol 18.97 1.2 14.67 1.4

*po0.05, ***po0.001 compared with the respective vehicle-treated control,
+po0.05, +++po0.01 compared with 50 fmol ADPbS, Student–Newman–
Keuls test after one-way ANOVA.

Figure 4 Means7SEM percentage of time spent on the open arms in
the elevated plus-maze of rats. The rats were tested 5min after i.c.v.
administration of a,bmeATP in various doses in comparison with vehicle
(aCSF)-treated controls.
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Influence of the Pretreatment with L-NAME on the
Anxiolytic-Like Effect of ADPbS

The pretreatment with L-NAME (0.5 nmol) antagonized the
anxiolytic-like effect of ADPbS (50 fmol) with respect to the
percentage of time spent on the open arms (F(3,31)¼ 41.2,
po0.001) (Figure 6). The percentage of open arm entries
was also decreased by the pretreatment with L-NAME
(F(3,31)¼ 3.48, p¼ 0.029) (Table 2) in comparison with the
aCSF and the ADPbS group. The ANOVA revealed that the
general locomotor activity was not changed in the different
groups (F(3,31)¼ 0.89, p¼ 0.45) (Table 2).

Influence of the Pretreatment with L- or D-Arginine on
the Anxiogenic-Like Effect of PPADS

The pretreatment with L-arginine (500 pmol) completely
antagonized the anxiogenic-like effect of PPADS (5 pmol)
with respect to the percentage of time spent on the open
arms (F(5,47)¼ 10.5, p¼ 0.006) (Figure 7) as well as to the
open arm entries (F(5,47)¼ 18.6, po0.001) (Table 2),
whereas the pretreatment with D-arginine was without
influence on the PPADS effect. L-Arginine alone showed
anxiolytic-like properties indicated by an increase of the
percentage of time spent on the open arms (p¼ 0.014) and
the open arm entries (p¼ 0.014). D-Arginine was without
effect on any of the measured parameters in the plus-maze
(p¼ 0.99). The general locomotor activity was not affected
by either of the treatment regimens.

Immunohistochemistry

Immunohistochemical staining revealed the presence of
P2Y1 receptors on neurons in relevant brain regions such as
hypothalamus, amygdala, hippocampus, and periaqueductal
gray, which are known to be involved in the regulation of
anxiety and fear. Especially the labeling of the dorsomedial
nucleus of the hypothalamus shows a high density of P2Y1-
immunoreactivity (IR) (Figure 8b and e). A weakly
expressed P2Y1 IR was found in the basomedial nucleus
of the amygdala (Figure 8h) and the dorsal hippocampus,
for example in the CA3 region (Figure 8k). In the basolateral
nucleus of the amygdala and the periaqueductal gray, only
scarce P2Y1-IR was detected (data not shown).
The labeling of nNOS reveals a high density in the

dorsomedial hypothalamus (Figure 8a and d). The expres-

Figure 5 Means7SEM percentage of time spent on the open arms in
the elevated plus-maze of rats. The rats were tested 30min after i.c.v.
administration of L-NAME in various doses in comparison with vehicle
(aCSF)-treated controls and 5min after L-arginine (L-ARG) with and
without pretreatment with L-NAME (0.5 nmol). *po0.05, **po0.02,
***po0.001 compared with the vehicle-treated controls, +po0.05
compared with the L-NAME (0.5 nmol) group, Student–Newman–Keuls
test after one-way ANOVA.

Figure 6 Means7SEM percentage of time spent on the open arms in
the elevated plus-maze of rats. The rats were tested 5min after i.c.v.
administration of ADPbS or 30min after L-NAME in comparison with
vehicle (aCSF)-treated controls. ***po0.001 compared with vehicle-
treated controls, +++po0.001 compared with the ADPbS group, Student–
Newman–Keuls test after one-way ANOVA.

Table 2 Mean7 SEM Percentage of Entries into Open Arms
and Number of Closed Arm Entries Made by Rats Tested in the
Elevated Plus-Maze 30min after i.c.v. Administration of L-NAME,
10min after PPADS, and 5min after ADPbS or L- or D-Arginine

Treatment % Open arm
entries

Enclosed arm
entries

aCSF 16.47 1.3 14.67 0.6
L-NAME
0.05 nmol 13.07 2.1 12.87 1.4
0.5 nmol 11.47 0.8 14.97 1.1
5.0 nmol 6.7 7 1.9* 13.37 1.4

L-NAME/L-Arginine 0.5 nmol/500 pmol 14.17 2.2 15.17 1.9
L-Arginine 500 pmol 17.47 1.7 17.07 2.8

aCSF 17.57 1.5 14.17 1.8
ADPbS 50 fmol 20.67 1.9 17.17 2.2
L-NAME/ADPbS 0.5 nmol/50 fmol 15.77 1.6+ 15.47 1.3
L-NAME 0.5 nmol 14.67 1.7+ 14.37 1.7

aCSF 19.27 1.4 14.97 2.1
PPADS 5 pmol 8.8 7 1.7** 14.57 2.7
PPADS/L-Arginine 5 pmol/500 pmol 28.27 1.9++ 17.27 2.9
PPADS/D-Arginine 5 pmol/500 pmol 9.6 7 0.9**++ 16.37 2.0
L-Arginine 500 pmol 23.27 2.7** 15.67 1.7
D-Arginine 500 pmol 17.37 1.7 12.87 1.8

*po0.05, **po0.02 compared with the respective vehicle-treated control,
+po0.05, ++po0.02 compared with ADPbS (50 fmol) or PPADS (5 pmol),
respectively, Student–Newman–Keuls test after one-way ANOVA.
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sion of nNOS-IR in the basomedial nucleus amygdala and
the hippocampal CA3 region (Figure 8g and j) was
considerably lower. The colocalization of P2Y1-IR and
nNOS-IR at various neurons in the studied regions is
documented in Figure 8(f, i, l).

DISCUSSION

The metabolically stable P2 receptor agonist ADPbS,
preferential for adenine nucleotide-sensitive P2Y1, P2Y11,
and P2Y12 receptors, produced anxiolytic-like effects in the
rat elevated plus-maze after i.c.v. administration at doses
between 5 and 500 fmol. Both the percentage of time spent
on the open arms and the percentage of open arm entries
were increased by this ADP analog. The highest tested dose
of ADPbS (500 fmol) significantly decreased the enclosed
arm entries that were used as an indicator of drug-induced
changes of general locomotor activity. It has been shown
that the effects of compounds on the elevated plus-maze
behavior such as amphetamine were confounded by an
increase of general activity (Dawson et al, 1995). In the
turned around sense, a decreased locomotion could be
responsible for the tendency to a weaker anxiolytic-like
effect after 500 fmol ADPbS in comparison with 50 fmol. An
attenuated locomotor response could be a result of a
predominant activation of presynaptic dopamine D2 auto-
receptors in the nucleus accumbens or the striatum (Hu and
Wang, 1988) after a slightly enhanced dopamine release
induced by the ADP analog. Another explanation could be a
P2 receptor-mediated glutamate release in the same area
(Krügel et al, 2001b), which is known to reduce locomotor
activity (Schmidt and Kretschmer, 1997). The high potency

of ADPbS to produce anxiolytic-like effects agrees with
various in vitro studies that documented the high affinity of
ADPbS to bind to rat brain P2Y1 receptors (Vöhringer et al,
2000). It seems unlikely that P2Y2, P2Y4, or P2Y6 receptors
are involved in the ADPbS response for the tested doses.
Pretreatment with the P2 receptor antagonist PPADS

abolished the ADPbS-induced effects. The anxiogenic-like
effects of PPADS alone suggest that an endogenous ATP
acting at P2 receptors is involved in the regulation of
anxiety and fear. PPADS is a nonselective P2 receptor
antagonist. In addition to the blockade of various P2X
receptors, PPADS also acts as an effective antagonist at the
P2Y1 receptor, whereas it is completely ineffective at the
P2Y11 receptor (Communi et al, 1999). PPADS does not
recognize P2Y2 receptors up to a concentration of 30 mM
and is also a relatively ineffective antagonist at the uridine
nucleotide-sensitive P2Y4 and P2Y6 receptors (Charlton et
al, 1996; Bogdanov et al, 1998; Dol-Gleizes et al, 1999).
PPADS also fails to block P2Y12 receptor-mediated effects
(Nicholas, 2001). It has been shown that only P2Y receptors
coupled to phospholipase C, but not those negatively
coupled to adenylate cyclase, were inhibited by PPADS
(Boyer et al, 1994). In this view, the anxiolytic-like effect of
ADPbS appears to be mediated by an activation of
phospholipase C, leading to the production of inositol-
1,4,5-trisphosphate (IP3) and to the mobilization of
intracellular Ca2+ resulting in the stimulation of a variety
of signaling pathways such as protein kinase C, phospho-
lipase A2, Ca

2+-dependent K+-channels as well as NOS and
subsequent NO formation.
It is thought that neither cell death (Chan and Lin-Shiau,

2001) nor unspecific effects of PPADS such as the inhibition
of ectonucleotidase activity (Windscheif et al, 1995) or the
inhibition of IP3-induced Ca2+ mobilization by a nonspe-
cific mechanism (Vigne et al, 1996) contribute to the
PPADS-mediated effects at the tested dose. Furthermore, it
should be emphasized that in contrast to the P2 receptor
antagonists suramin and reactive blue 2 no direct glutamate
antagonistic properties were found for PPADS (Fröhlich et
al, 1996; Motin and Bennett 1995; Gu et al, 1998). The
anxiolytic-like effects of ADPbS were also abolished after
pretreatment with MRS 2179, which acts as a specific P2Y1

receptor antagonist (Boyer et al, 1998). MRS 2179 alone
produced anxiogenic-like effects similar to those caused by
PPADS, suggesting that the blockade of P2Y1 receptors is
mainly involved in mediating the PPADS-induced anxiety.
No effects were observed after i.c.v. administration of

a,bmeATP up to doses of 5 nmol. This ATP analog, which is
resistant to enzymatic degradation (Kennedy and Leff
1995), acts on homomeric P2X1 and P2X3 receptors as well
as on heteromeric P2X4/P2X6 receptors, but it is known to
be inactive at P2Y receptors (Ralevic and Burnstock, 1998;
Nörenberg and Illes, 2000). In this view, an involvement of
P2X receptors on the regulation of anxiety appears unlikely,
although it cannot be completely excluded.
The unspecific NOS inhibitor L-NAME produced dose-

dependent anxiogenic-like effects. These results conform
with studies of Vale et al (1998) after intraperitoneal (i.p.)
injection of L-NAME. Anxiogenic-like effects after the
inhibition of NOS were also reported by other authors.
For example, the NOS inhibitor L-NOARG decreased the
exploration of an elevated plus-maze system (De Oliveira et

Figure 7 Means7SEM percentage of time spent on the open arms in
the elevated plus-maze of rats. The rats were tested 15min after i.c.v.
administration of PPADS or 5min after L- or D-arginine (L-, D-ARG) in
comparison with the vehicle (aCSF)-treated controls. **po0.02 compared
with vehicle-treated controls, ++po0.02 compared with the PPADS group,
Student–Newman–Keuls test after one-way ANOVA.
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al, 1997) and was able to antagonize the anxiolytic-like
effects of NO (Caton et al, 1994) as well as of chlordiazep-
oxide (Quock and Nguyen, 1992). Anxiogenic-like effects
were also reported after intra-amygdala or intra-hippocam-

pal injection of L-NOARG (Monzon et al, 2001). On the one
hand, eNOS-deficient mice showed an increase in anxiety-
related behavior in the plus-maze in comparison with the
wild-type controls (Frisch et al, 2000). On the other hand,

Figure 8 Confocal images of double immunofluorescence of the P2Y1 receptor subtype and nNOS on cells in different brain regions of the rat under
normal conditions. (a–c) Dorsomedial hypothalamus (DMH), (d–f) dorsomedial hypothalamus (greater magnification), (g–i) basomedial amygdala (BMA),
(j–l) hippocampus (CA3 region). By color coding Cy3 labelling appears as green (P2Y1 receptor), whereas immunoreactivity for Cy2 is red (nNOS). Scale
bar: (a–c): 50 mm; (d–l): 20 mm.
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anxiolytic-like effects of L-NAME have been reported in the
rat elevated plus-maze after i.p. injections (Volke et al,
1995) as well as after administration into the periaqueductal
gray area (Guimaraes et al, 1994). However, in both studies
the anxiolytic-like response occurred only in a small dose
range at lower doses, whereas at higher doses anxiogenic-
like effects became apparent. In the present study, a weak
but significant anxiolytic effect of L-arginine alone was
observed, whereas other authors failed to show any
anxiolytic effects of L-arginine on the elevated plus-maze
(Yildiz et al, 2000, Volke et al, 1997). Possible reasons for
these incompatible findings may consist in a different basal
tonus of fear in the animals used and in different
application routes.
The discussion of inconsistent results from studies using

the elevated plus-maze had also to consider that there are
different stages of the elevated plus-maze behavior. At first,
a stimulation of anxiety-like behavior may result in a
facilitated passive avoidance response. The animals remain
in the enclosed arms. A more potent stimulation of anxiety-
like behavior may result in a situation in which the animal
is motivated to search for an escape route from the maze
(Kalynchuk et al, 1998). In the present study, the increased
anxiety-like behavior after L-NAME as well as after PPADS
and MRS 2179 administration resulted in a stimulation of
passive avoidance (animals remained in the enclosed arms)
without stimulation of the escape behavior.
To avoid the cardiovascular effects of L-NAME, the

compound was administered into the lateral ventricle (Rees
et al, 1990). It has been shown that the i.c.v. administration
of L-NAME did not cause any alteration of blood pressure
and heart rate (Hamada et al, 1995; Chikada et al, 2000).
Considering the distribution properties of NOS inhibitors
after application into the lateral ventricle (Greenberg et al,
1997; Salter et al, 1995), only regions in close proximity to
the ventricle such as the thalamus, the hypothalamus or the
striatum are possible targets for mediating the anxiogenic-
like effects after L-NAME application.
Although the nNOS is the predominant isoenzyme of NOS

in the neuronal tissue, a contribution of eNOS or iNOS to
the L-NAME-evoked effects cannot be excluded. The
selective nNOS inhibitor 7-nitroindazole is not an alter-
native to L-NAME in this respect, because of its monoamine
oxidase (MAO)-B inhibitory effects (Castagnoli et al, 1997;
Royland et al, 1999). MAO inhibitors were shown to have
anxiolytic-like properties in the elevated plus-maze (Griebel
et al, 1998).
Pretreatment with the NOS inhibitor L-NAME not only

led to an expression of enhanced anxiety, but also
completely abolished the anxiolytic-like effects of ADPbS,
suggesting that these effects are in close relation to
enhanced NO formation. Considering the assumption that
NOS is stimulated by an increase of intracellular Ca2+, L-
NAME acts downstream to the P2 receptor-mediated effects.
In fact, ADPbS did not attenuate the L-NAME-induced
anxiety.
The influence of the pretreatment with L- and D-arginine

on the PPADS-mediated effect was also investigated in this
study. When PPADS pretreated rats obtained L-arginine, the
anxiogenic-like influence of PPADS on the elevated plus-
maze behavior was abolished, while by the treatment with D-
arginine the PPADS-mediated effect remained unchanged.

In summary, the results of these experiments demonstrate
that NO is involved in mediating the behavioral effects of
P2Y1 receptor stimulation. Confirming this possibility, the
blockade of the P2 receptors by PPADS may lead to a
decrease of the NO release, an effect that is synergistic with
the action of NOS inhibitors. Further evidence for a close
relationship between P2 receptors and NO production is
given by a study of Liu et al (2000), which shows that
pretreatment of astrocytes with P2 receptor antagonists
including PPADS results in a down regulation of inter-
leukin-1b-stimulated NOS expression.
The present immunohistochemical data show a distribu-

tion of the P2Y1 receptors in the rat brain, which agrees well
with that observed in human brain (Moore et al, 2000).
From CNS areas known to be involved in the regulation of
anxiety and fear, the highest density of P2Y1-IR was found
in the area of the dorsomedial hypothalamus. Moreover, a
considerable part of the neurons in this hypothalamic
nucleus showed a coexpression of P2Y1 receptor- and
nNOS-IR. The dorsomedial hypothalamus is associated with
various physiological functions such as the regulation of
anxiety and the modulation of food intake (Vanhatalo and
Soinila, 1998; Shekhar and Keim, 1997). For example, the
blockade of GABAA receptors in the dorsomedial hypotha-
lamus increases corticosterone and ACTH plasma levels
(Keim and Shekhar, 1996), whereas lesion of this nucleus
causes anxiolytic-like effects (Inglefield et al, 1994). In the
present study, immunohistochemical staining has demon-
strated that P2Y1 receptors and nNOS are colocalized in a
population of neurons in the dorsomedial hypothalamus.
Therefore, it is conceivable that this area is at least one
possible site of action participating in the P2Y1 receptor-
mediated effects on fear and anxiety. This assumption is
supported by preliminary experiments with infusion of
ADPbS (50 fmol) directly into the dorsomedial hypothala-
mus. The ADPbS-treated animals showed a significant
decrease in anxiety, but no changes in locomotor activity (H
Kittner, unpublished observation).
An inhibition of the dorsomedial hypothalamus after

stimulation of P2Y1 receptors may be mediated by an
activation of the NO-cyclic GMP pathway, followed by an
opening of ATP-sensitive K+ channels. P2Y1- and nNOS-IR
was found to a lesser extent in the basomedial amygdala and
the dorsal hippocampus.
Although only a small number of neurons showing P2Y1-

and nNOS-IR was found in the basolateral amygdala and the
periaqueductal gray, we cannot reliably exclude an involve-
ment of these structures in the elevated plus-maze behavior.
It has been shown that NO release, for example, only from
few non-noradrenergic neurons in the locus coeruleus may
influence a large population of noradrenergic neurons,
which in turn may control the neuronal activity in various
brain regions (Xu et al, 1998). Nevertheless, it seems
unlikely that the basomedial amygdala and the dorsal
hippocampus considerably participate in the ADPbS-
induced anxiolytic-like response because the basomedial
amygdala is mainly involved in mediating feeding and social
behavior as well as emotion-related learning (Petrovich et
al, 1996). The dorsal hippocampus does not seem to play an
important role in controlling the behavior during the first
exposure to the plus-maze system (Treit and Menard 1997;
File et al, 1998, 2000).
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In conclusion, the results of the present study reveal that
P2Y1 receptors are involved in the modulation of anxiety.
The anxiolytic-like effects after stimulation of the P2Y1

receptor seem to be in close relationship with the ensuing
formation of NO.
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