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Incorporation coefficients k* of intravenously injected [3H]arachidonic acid from blood into brain reflect the release from phospholipids

of arachidonic acid by receptor-initiated activation of phospholipase A2 (PLA2). In unanesthetized adult rats, 2.5mg/kg intraperitoneally

(i.p.) (7 )2,5-dimethoxy-4-iodophenyl-2-aminopropane (DOI), which is a 5-HT2A/2C receptor agonist, has been reported to produce

the behavioral changes of what is known as the 5-HT2 syndrome, but only a few small regional decrements in brain glucose metabolism.

In this study, 2.5mg/kg i.p. DOI, when administered to unanesthetized rats, produced widespread and significant increases, of the order of

60%, in k* for arachidonate, particularly in neocortical brain regions reported to have high densities of 5-HT2A receptors. The increases

could be entirely blocked by chronic pretreatment with mianserin, a 5-HT2 receptor antagonist. The results suggest that the 5-HT2
syndrome involves widespread brain activation of PLA2 via 5-HT2A receptors, leading to the release of the second messenger,

arachidonic acid. Chronic mianserin, a 5-HT2 antagonist, prevents this activation.
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Keywords: serotonin (5-HT); phospholipase A2; DOI; mianserin; arachidonic acid; imaging; brain

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

INTRODUCTION

Some atypical antipsychotic and other drugs effective in
schizophrenia, depression, obsessive–compulsive disorder,
and neurodegenerative disease are considered to act at
serotonin (5-hydroxytryptamine) 5-HT2 receptors (Barnes
and Sharp, 1999; Breier, 1995; Ramasubbu et al, 2000;
Rauser et al, 2001; Reynolds, 2001; Thase, 2002). In brain,
5-HT2 receptors can be coupled via G-proteins to phos-
pholipase C (PLC) activation, generating inositol 1,4,5-
trisphosphate (IP3) and diacylglycerol as second messengers
(Conn and Sanders-Bush, 1986b; Edagawa et al, 2000), or to
phospholipase A2 (PLA2) activation, releasing arachidonic
acid (AA) from phospholipids (Axelrod, 1995; Berg et al,
1998; Felder et al, 1990; Tournois et al, 1998). Both AA and
its eicosanoid metabolites are important second messengers
(Shimizu and Wolfe, 1990).

A 5-HT2 syndrome has been described in rats following
administration of the 5-HT2A/2C receptor agonist (7 )2,5-
dimethoxy-4-iodophenyl-2-aminopropane (DOI) (Glennon,
1986; Johnson et al, 1998; Pranzatelli, 1990; Wettstein et al,
1999). The syndrome is characterized by head and body

shakes, ear scratching, skin jerks, and forepaw tapping. It is
maximal in response to 3.0 mg/kg intraperitoneal (i.p.) DOI,
and 2.5 mg/kg i.p. DOI has been used widely in behavioral
and biochemical studies of the syndrome. Additionally,
2.5 mg/kg i.p. DOI in rats markedly stimulates the release of
corticotropin (ACTH), corticosterone, oxytocin, renin, and
prolactin, and activates hypothalamic corticotropin-releas-
ing factor and oxytocin-expressing neurons (Van de Kar et
al, 2001). DOI also induces hyperthermia in rats (Mazzola-
Pomietto et al, 1997).

Despite the marked behavioral and neuroendocrine
effects of 2.5 mg/kg DOI, the regional cerebral metabolic
rate for glucose (rCMRglc), a marker of neuronal activity
measured with intravenous [14C]2-deoxy-d-glucose, was
minimally affected in unanesthetized rats given this dose of
DOI (Freo et al, 1991). Of 75 brain regions examined using
quantitative autoradiography, this dose of DOI reduced
rCMRglc significantly in layer IV of the pyriform cortex, the
ventral CA3 region of the hippocampus, the cortical nucleus
of the amygdala, and the olfactory tubercle. The reductions
were ascribed to inhibition by DOI of neuronal spike
activity (Ashby et al, 1990; Bloom, 1985; Cooper et al, 1996),
to which rCMRglc is said to be coupled (Sokoloff, 1999). In
another study, adrenalectomy or pretreatment with metyr-
apone (an inhibitor of 11-b-hydroxylase, a rate-limiting
enzyme in corticosterone syntheses) abolished rCMRglc

declines in the dorsal CA1, CA2 and CA3 regions of the
hippocampus in response to 10 mg/kg i.p. DOI, suggesting
to the authors that hippocampal activity can be modu-
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lated by the hypothalamic–pituitary–adrenal axis (Freo et al,
1992).

It is not evident why 2.5 mg/kg i.p. DOI produces the
marked behavioral activation of the 5-HT2 syndrome, while
at the same time causing decrements in rCMRglc. We
thought that this discrepancy might be clarified if we could
examine postsynaptic signal transduction in vivo, secondary
to 5-HT2 receptor occupancy by DOI. As noted above, such
signaling can occur through activation of PLC or PLA2. No
method currently exists to image brain PLC activation in
vivo, whereas PLA2 activation can be imaged by using
quantitative autoradiography to measure incorporation
into brain of intravenously injected, radiolabeled AA
(DeGeorge et al, 1991; Hayakawa et al, 2001; Nariai et al,
1991; Rapoport, 2001; Robinson et al, 1992). We thought
that we would use this latter method. Tracer incorpora-
tion in response to an appropriate agonist reflects
PLA2-mediated hydrolysis of unlabeled AA from the
stereospecifically numbered (sn)-2 position of synaptic
brain phospholipids (DeGeorge et al, 1991; Fonlupt et al,
1994; Grange et al, 1998; Jones et al, 1996), independent of
changes in regional cerebral blood flow (rCBF) (Chang et al,
1997; DeGeorge et al, 1991; Robinson et al, 1992; Robinson
and Rapoport, 1986; Yamazaki et al, 1994). Receptors
coupled to PLA2 via membrane G-proteins include choli-
nergic muscarinic M1 and M3 receptors, dopaminergic D2

receptors, and serotonergic 5-HT2 receptors (Axelrod, 1995;
Bayon et al, 1997; Cooper et al, 1996; DeGeorge et al, 1991;
Felder et al, 1990; Hayakawa et al, 2001; Vial and Piomelli,
1995). PLA2 can also be activated when Ca2+ enters cells by
glutamate acting at N-methyl-d-aspartate (NMDA) recep-
tors or by acetylcholine acting at nicotinic receptors
(Brooks et al, 1989; Cooper et al, 1996; Vijayaraghavan
et al, 1995).

In the present study, we injected tritiated AA ([3H]AA)
intravenously in unanesthetized rats and used quanti-
tative autoradiography to determine regional brain
incorporation coefficients k* of the tracer in response to
2.5 mg/kg i.p. DOI. The racemic DOI commonly is
used to study effects of in vivo 5-HT2A/2C receptor
activation. Both stereoisomers bind with equivalent affi-
nities to 5-HT2A/2C receptors, although (�)DOI is twice as
potent as (+)DOI in inducing head twitches in mice
(Glennon, 1986, 1987; PDSP Drug Database, 2000; Pranza-
telli, 1990; Roth et al, 2000).

We also quantified k* for [3H]AA in response to
chronically administered mianserin, an atypical tetracyclic
antidepressant that has been used as a 5-HT2-receptor
antagonist in many animal studies, although having some
adrenergic a2-antagonist activity as well (Anji et al, 2000;
Ashby et al, 1990; Blackshear and Sanders-Bush, 1982;
Dijcks et al, 1991; Hoyer et al, 1995; PDSP, 2000; Pranzatelli,
1990; Rocha et al, 1994; Roth and Ciaranello, 1991; Roth et
al, 2000; Sanders-Bush et al, 1987; Schreiber et al, 1995).
Finally, we measured k* in response to 2.5 mg/kg i.p. DOI
24 h after mianserin administration (Arvidsson et al, 1986;
Berendsen and Broekkamp, 1991; Sanders-Bush et al, 1987),
by which time mianserin is known to be largely washed
out from the brain (Dijcks et al, 1991; Sanders-Bush et al,
1987).

An abstract of part of this work has been published (Qu et
al, 2001).

MATERIALS AND METHODS

Chemicals

Radiolabeled [5,6,8,9,11,12,14,15-3H]AA ([3H]AA) at a
specific activity of 200 Ci/mmol was purchased from
Moravek Biochemicals (Brea, CA). Radiochemical purity
by thin-layer chromatography always exceeded 96%.
Mianserin and DOI were purchased from Sigma-Research
Biochemicals International (Natick, MA). Pentobarbital
sodium was purchased from Richmond Veterinary Supply
Co. (Richmond, VA).

Animals

Male Fischer-344 rats (Charles River Laboratories, Wil-
mington, MA), 12 weeks old and weighing 290–320 g, were
housed under standard laboratory conditions under a 12-h
light/12-h dark cycle, with ready access to standard
laboratory chow and water. The experimental protocol
was approved by the National Institute of Child Health and
Human Development Animal Care and Use Committee and
conformed to the Guide for the Care and Use of Laboratory
Animals (National Institute of Health Publication 86-23).

Arterial and Venous Catheterization

Rats were placed in four experimental groups of 10 animals
each: (1) controls; (2) rats given 2.5 mg/kg i.p. DOI acutely;
(3) rats administered 10 mg/kg i.p. mianserin daily for 14
days, then not given mianserin for 24 h; (4) rats adminis-
tered 10 mg/kg i.p. mianserin daily for 14 days, then not
given mianserin for 24 h, and then given 2.5 mg/kg i.p. DOI.

The in vivo fatty acid method has been described
elsewhere (DeGeorge et al, 1991; Hayakawa et al, 2001).
Briefly, rats in each of the four groups were anesthetized
with halothane (1–3% v/v in O2). PE 50 polyethylene
catheters (Clay Adams, Lincolnshire, IL) filled with
heparinized saline (100 IU/ml) were surgically implanted
into a femoral artery and vein, after which the incision site
was infiltrated with a local anesthetic (lidocaine) and closed
with wound clips. The rats were wrapped loosely in a fast-
setting plaster cast, secured to a wooden block with the
upper body free, and allowed to recover from anesthesia in
a temperature-controlled and sound-dampened box for 4 h.
Body temperature was kept at 36–371C by means of a rectal
thermometer and a feedback heating device.

Drug Administration and Tracer Infusion

After the rat recovered from anesthesia for 4 h, 125 ml
arterial blood was withdrawn to measure pH, pO2, and
pCO2. Rats (8–10 per group) were administered either saline
(control) or 2.5 mg/kg i.p. DOI. After 20 min, 1.75 mCi/kg
[3H]AA in 2 ml of 5 mM HEPES buffer, pH 7.4, containing
50 mg/ml fatty-acid-free bovine serum, was infused through
the venous cannula with an infusion pump (Harvard
Instrument Co., Holliston, MA) at a rate of 400 ml/min for
5 min.Timed 125-ml arterial blood samples were collected
from the beginning of infusion to 20 min, when the rats
were killed with 65 mg i.v. sodium pentobarbital. Brains
were removed and frozen in 2-methylbutane at �501C for
subsequent autoradiography. Plasma was separated from
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arterial blood by centrifugation, and lipids were extracted
using the method of Folch et al (1957). Radioactivity in the
organic fraction was measured by liquid scintillation
spectroscopy.

Autoradiography and Calculations

Frozen brains were sectioned on a cryostat at �201C. Sets of
three adjacent 20-mm sections were collected and mounted
on glass coverslips at 140-mm coronal intervals and dried.
The sections were exposed together with [3H]methylmetha-
crylate autoradiographic standards (Amersham, Arlington
Heights, IL) to [3H]hyperfilm (Amersham) for 15–18 weeks
and then developed following the manufacturer’s instruc-
tions. One of the three adjacent sections was collected and
stained with cresyl violet to identify brain regions with
reference to a rat-brain atlas (Paxinos and Watson, 1987).

Regional brain radioactivity was measured in sextuplicate
by quantitative densitometry using the public domain
image analysis program NIH Image (version 1.62) created
by Wayne Rasband (National Institutes of Health, Bethesda,
MD), installed on a Macintosh computer (Apple Computer,
Cupertino, CA). Regional brain incorporation coefficients
k* were calculated as

k� ¼ c�brainð20 minÞ
R 20

0 c�plasmadt

where k* is in units of ml/(s g); cbrain
* (20 min) is the brain

radioactivity at 20 min in nCi/g, cplasma
* is the plasma fatty

acid radioactivity in nCi/ml, and t is time after onset of
[3H]AA infusion.

Data were compared using Prism software for the
Macintosh (Abacus Concepts, Berkeley, CA) and are
reported as means 7 SEM. A one-way ANOVA and
Dunnett’s (Dunnett, 1964) multiple comparison test were
used to evaluate statistical significance between experi-
mental and control means; po0.05 was taken as statistically
significant.

RESULTS

Table 1 summarizes mean physiological parameters in
unanesthetized control rats and in rats treated chronically
with mianserin. These values are similar to published
values.

As illustrated in Figure 1, coronal autoradiographs
showed widespread increments in k* (brain radioactivity
divided by integrated plasma radioactivity; Equation (1))
for [3H]AA after 2.5 mg/kg i.p. DOI, compared with k* from

control rats. The largest increments were in motor and
somatosensory cortical areas.

Mean regional [3H]AA incorporation coefficients (k*)
in saline-treated control rats are presented in the first
data column of Table 2. The values are compara-
ble to previously published control values (DeGeorge
et al, 1991; Hayakawa et al, 2001). Notable is the 6- to
10-fold greater k* at the choroid plexus than in the brain
parenchyma.

Compared with controls, 2.5 mg/kg i.p. DOI produced
widespread and statistically significant increments in k* for
[3H]AA, of the order of 60%, in many brain regions (second
data column of Table 2), but particularly in the neocortex.

After 14 days of mianserin administration, and allowing
24 h for mianserin to be washed out from the brain (Dijcks
et al, 1991; Sanders-Bush et al, 1987), there was no
significant difference in mean k* for [3H]AA in any brain
region compared with the respective k* in control animals
(third data column of Table 2). Furthermore, when DOI was
administered after 2 weeks of mianserin after allowing for
washout (fourth data column of Table 2), no statistically
significant difference in mean k* was found in any brain
region or in the choroid plexus, compared with the
respective control mean. Thus, chronic mianserin comple-
tely blocked all DOI-induced increments in [3H]AA
incorporation.

DISCUSSION

The 5-HT2A/2C receptor agonist DOI, at a dose of 2.5 mg/kg
i.p., caused widespread and large (as high as 60%)
increments in k* for [3H]AA in brains of unanesthetized
adult rats. These increments are consistent with the
reported marked behavioral (5-HT2 syndrome) and neu-
roendocrine responses provoked by this dose (Johnson et
al, 1998; Pranzatelli, 1990; Van de Kar et al, 2001; Wettstein
et al, 1999). The increments in k* could be completely
blocked by chronic pretreatment with mianserin, a 5-HT2

receptor agonist that has been reported to block the 5-HT2

syndrome and the hyperthermia produced by DOI (Be-
rendsen and Broekkamp, 1991; Mazzola-Pomietto et al,
1997).

The interpretation that k* for [3H]AA reflects regional
PLA2 activation derives from experimental observations
that k* is independent of rCBF, that incorporation of labeled
AA from blood into brain phospholipids is very rapid, and
that k* reflects brain PLA2 but not PLC activity (Rapoport,
2001; Rapoport et al, 2001; Robinson et al, 1992; Washizaki
et al, 1991). That k* is independent of rCBF is evident from

Table 1 Physiological Parameters of Rats after Surgery

Control rat Mianserin rat

Body temperature (1C) 35.67 0.1 35.37 0.2
Arterial blood pressure (mm Hg) 97. 77 3.6/130.67 4.8 95.27 2.5/121.27 2.4
Heart rate (beats/min) 425.07 13.7 430.97 13.6
Arterial pH 7.47 0.008 7.47 0.008
Arterial blood gas, pCO2 (mmHg) 38.97 1.6 41.17 1.3
Arterial blood gas, pO2 (mm Hg) 95.47 2.2 93.87 1.9

Mean7 S.E.M. (n¼ 11–14). Chronic treatment with mianserin (i.p.) for 14 days, 1 day washout.
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several observations. As shown in Table 2, k* for [3H]AA
was markedly elevated in response to 2.5 mg/kg DOI (Table
2), despite evidence that rCMRglc, to which rCBF is coupled
(Reivich, 1974), declines or does not change with this dose
(Freo et al, 1991, 1992). Likewise, administration to rats of
arecoline, a cholinergic agonist that acts at muscarinic M1

receptors coupled to PLA2, increased rCMRglc and rCBF (as
well as k*) for labeled AA, without affecting k* for labeled
palmitic acid (DeGeorge et al, 1991; Jones et al, 1996; Maiese
et al, 1994; Soncrant et al, 1985). Thus, fatty acid uptake by
the brain is not increased by increased rCBF per se. Finally,
values for k* for both labeled palmitate and arachidonate
were shown to be unaffected by two-fold increments in
rCBF induced by hypercapnia in rats and monkeys (Chang
et al, 1997; Yamazaki et al, 1994).

The independence of k* from rCBF arises because
circulating plasma albumin, to which fatty acid is highly
bound but from which it can rapidly dissociate (Svenson et
al, 1974), acts as an ‘infinite source’ of intravascular tracer
for entry into brain (Robinson et al, 1992; Robinson and
Rapoport, 1986; Washizaki et al, 1991). As blood passes
through the brain, unesterified unbound labeled fatty acid is
rapidly extracted and replaced by fatty acid released from
albumin. About 5% of a plasma fatty acid is stripped from
albumin as blood passes through the brain (Pardridge and
Mietus, 1980).

Within 2 min after entering rat brain following its
intravenous injection, 90% of radiolabeled AA has been

incorporated into ‘stable’ brain lipids, largely into the sn-2
position of phospholipids. The remainder, found in the
aqueous fraction, represents metabolites arising from
comparatively slow b-oxidation (Osmundsen and Hovik,
1988). The rate of disappearance of labeled AA from brain
phospholipids is only 10% per hour (DeGeorge et al, 1989;
Rapoport, 2001; Rapoport et al, 2001; Washizaki et al,
1994), which means that we can image tracer incorporation
at 20 min without worrying about loss from the phospho-
lipids. Finally, inhibiting brain PLA2 activity in vivo by drug
produces a proportional reduction in k* for [3H]AA
(Grange et al, 1998).

Chronically administered mianserin had no effect on
baseline values of k* for [3H]AA, but prevented DOI-
initiated increments in k* (Table 2). The 5-HT2 receptor-
mediated activation of PLC by DOI, which increases
phosphatidylinositol turnover and Ca2+ mobilization by
IP3, is also reported to be inhibited by chronic mianserin
(Conn and Sanders-Bush, 1986b; Wolf and Schutz, 1997).
Inhibition of signaling in both cases is probably due to
mianserin-induced neuroplastic changes, rather than to
physical blocking of 5-HT2 receptors by mianserin, as the
brain mianserin concentration falls to less than 0.1% of its
peak concentration within 24 h after i.p. injection (Dijcks et
al, 1991; Sanders-Bush et al, 1987). Chronic mianserin is
reported not to alter extracellular serotonin levels in rat
brain (Kreiss and Lucki, 1995), but is reported to reduce
brain densities of 5-HT2A receptors (Berendsen and
Broekkamp, 1991; Blackshear and Sanders-Bush, 1982;
Essom and Nemeroff, 1996; Frazer et al, 1988; Roth and
Ciaranello, 1991) and 5-HT2C receptors (Rocha et al, 1994).
Phosphorylation and interaction of the receptors with
membrane G-proteins are altered (Hartman and Northup,
1996; Ozawa et al, 1994; Westphal et al, 1995), and both
receptor types are functionally hyposensitive (Mazzola-
Pomietto et al, 1997). Chronic mianserin, on the other hand,
produces a supersensitivity of adrenergic a2 receptors
(Pinder, 1985).

Head twitches of the 5-HT2 syndrome appear to be related
more to 5-HT2A than to 5-HT2C initiated signaling
(Schreiber et al, 1995); thus, a selective 5-HT2C antagonist
(SB 200,646A) did not inhibit the twitches. Additionally,
dopaminergic D1 antagonists as well as agonists to a1 and a2

adrenoreceptors and to 5-HT1A receptors reduced DOI-
induced head twitches, suggesting a role for nonserotoner-
gic mechanisms (Schreiber et al, 1995). A full 5-HT
syndrome has been described in humans, with some
components perhaps related to the 5-HT2 syndrome in
rodents. The clinical syndrome occurs with excess serotoner-
gic therapy and can be exacerbated by coadministration of a
monoamine oxidase inhibitor. Its features include an altered
mental status, restlessness, myoclonus, hyperreflexia, dia-
phoresis, shivering, and tremor (Mills, 1997; Sternbach, 1991);
it is treated by discontinuing serotonergic therapy.

The robust increments in k* induced by 2.5 mg/kg i.p.
DOI are accompanied by a few reductions in rCMRglc (Freo
et al, 1991, 1992), which are ascribed to reduced neuronal
spike activity (Ashby et al, 1990; Bloom, 1985; Cooper et al,
1996; Freo et al, 1991; Sokoloff, 1999). rCMRglc is a weighted
average, reflecting energy consumption by many brain
processes, and PLA2-initiated AA release and reincorpora-
tion consume only a small fraction of net brain adenosine

K*(104ml/s/g brain)

-2.66
-4.03
-7.98
-12.4
-25.8

Fr(IV)

POAcb FrPaM(IV)
Soms(IV)

Pir
CPU

CA1

CA2 CA3
DG

Str(Ast)

Aud

SC

PPT

IPC

a b

Figure 1 [3H]arachidonate incorporation coefficients k* in coronal
sections from brain of (a) control rat and (b) rat given DOI (2.5mg/kg i.p.);
k* is color-coded.
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Table 2 Regional [3H]Arachidonate Incorporation Coefficients k* (ml/(s g) brain� 104) in Rat Brain under Different Conditions

Brain regions Abbreviation Control DOI Mianserin Mianserin +DOI

Cerebral cortex
Prefrontal cortex IV PFr 8.67 0.4 14.07 1.3*** 9.17 0.6 9.37 0.9
Frontal cortex layer I Fr I 7.27 0.4 12.67 1.5*** 7.87 0.8 9.57 1.1
Frontal cortex layer IV Fr IV 9.27 0.5 15.57 1.5*** 9.97 0.9 10.97 1.0
Motor cortex layer I FrPaM I 7.07 0.5 11.87 0.9*** 7.87 0.8 8.87 1.1
Motor cortex layer II–III FrPaM II–III 7.57 0.5 13.77 1.2*** 8.47 0.7 9.07 0.9
Motor cortex layer IV FrPaM IV 9.37 0.5 16.67 1.6*** 10.47 0.9 11.17 1.1
Motor cortex layer V FrPaM V 7.67 0.5 13.37 1.1*** 8.57 0.7 9.07 0.9
Motor cortex layer VI FrPaM VI 6.87 0.4 11.77 1.0*** 7.47 0.6 8.07 0.8
Somatosensory cortex layer I Soms I 7.47 0.5 12.77 1.0*** 8.47 0.8 8.97 1.1
Somatosensory cortex layer II–III Soms II–III 8.27 0.6 14.17 1.3*** 8.67 0.7 9.87 1.0
Somatosensory cortex layer IV Soms IV 9.437 0 0.6 15.97 1.5*** 10.47 0.9 11.27 1.1
Somatosensory cortex layer V Soms V 7.737 0.5 12.37 0.9*** 8.17 0 0.6 9.07 1.0
Somatosensory cortex layer VI Soms VI 6.27 0.4 10.27 0.9*** 6.47 0.6 7.17 0.7
Anterior cingulate cortex Acg 8.67 0.5 13.17 1.0*** 8.67 1.0 9.67 1.1
Auditory cortex layer I Aud I 6.77 0.2 10.57 1.0*** 6.97 0.7 8.37 1.0
Auditory cortex layer IV Aud IV 8.97 0.4 12.17 0.8* 8.47 0.7 11.07 1.0
Auditory cortex layer V Aud V 7.27 0.4 11.17 1.1*** 7.07 0.7 8.27 0.7
Visual cortex layer I Str (Ast) I 6.37 0.2 11.17 1.1*** 6.97 0.7 7.67 0 0.8
Visual cortex layer IV Str (Ast) IV 8.27 0.4 14.57 1.3*** 8.77 0.8 10.17 1.1
Visual cortex layer V Str (Ast) V 6.87 0.4 11.97 1.1*** 7.27 0.7 8.07 0 0.9

White matter
Corpus callosum cc 3.27 0.3 5.47 0.5*** 3.57 0.3 3.97 0.5
Internal capsule ic 3.17 0.2 5.37 0.4*** 3.57 0.4 3.57 0.5

Olfactory system
Olfactory cortex PO 10.17 0.6 15.57 1.3*** 10.67 0.9 12.17 1.2
Pyriform cortex Pir 9.07 0.7 13.87 1.4*** 9.77 0.8 10.77 1.1

Basal ganglia and related areas
Nucleus accumbens Acb 8.07 0.4 12.57 1.4*** 11.17 1.3 10.17 1.0
Caudate-putamen dorsal CPU 6.37 0.3 10.17 0.9*** 6.67 0.6 7.37 0.8
Caudate-putamen ventral CPU 6.47 0.3 10.67 1.0*** 7.27 0.6 7.77 0.8
Caudate-putamen lateral CPU 6.67 0.3 10.57 1.0*** 6.97 0.5 8.27 0.7
Caudate-putamen medial CPU 6.27 0.3 10.27 0.8*** 6.87 0.6 7.77 0.7
Bed nucleus stria preoptic nucleus LPO/MPO 5.57 0.3 8.67 0.8*** 5.87 0.5 6.37 0.8
Bed nucleus stria suprachiasmatic nucleus PSCH 6.37 0.4 9.87 0.7*** 6.77 0.4 7.27 0.8
Bed nucleus stria terminalis BSTPO 4.77 0.2 7.27 0.7*** 5.17 0.5 5.97 0.7
Entopeduncular nucleus EN 4.17 0.2 6.97 0.6*** 4.67 0.4 4.97 0.6
Globus pallidus GP 4.37 0.3 7.07 0.5*** 4.97 0.5 4.97 0.6
Amygdala basolateral/basomedial nuclei BL/BM 5.17 0.2 8.07 0.8*** 5.67 0.6 5.87 0.7
Subthalamic nucleus Sth 6.47 0.4 9.97 0.8*** 6.57 0.8 7.47 0.8
Substantia nigra pars reticulata SNR 5.37 0.3 9.87 1.0*** 5.47 0.4 6.67 0.7
Substantia nigra pars compacta SNC 5.67 0.3 9.87 1.0*** 5.57 0.5 6.87 0.8
Lateral septal nucleus LSI 5.07 0.3 8.27 0.7*** 5.47 0.6 6.27 0.6
Medial septal nucleus MS 5.97 0.3 9.27 0.8*** 6.57 0.5 7.37 0.8
Dorsal diagonal band VDBD 6.57 0.4 9.87 0.8*** 7.07 0.6 7.87 0.9
Ventral diagonal band VDBV 5.97 0.4 8.87 0.6*** 6.37 0.7 7.07 0.9

Hippocampal formation
Ammon’s horn CA1 Hip CA1 7.87 0.4 12.07 0.9*** 8.17 0.6 8.87 1.0
Ammon’s horn CA2 Hip CA2 7.47 0.4 11.87 1.1*** 7.77 1.2 8.77 0.9
Ammon’s horn CA3 Hip CA3 6.87 0.3 10.77 0.8*** 7.27 0.6 8.27 0.8
Dentate gyrus DG 12.27 0.8 18.97 2.3* 14.57 1.5 14.57 1.7
Dorsal lateral geniculate nucleus DLG 6.97 0.3 10.97 0.9*** 7.67 0.7 8.17 0.8
Parafascicular nucleus PF 6.67 0.3 10.37 0.9*** 6.87 0.6 7.37 0.8

Thalamus
Paratenial nuclei PT 6.47 0.3 1.07 0.8*** 7.27 0.6 7.87 0.8
Anteroventral nuclei AV 9.47 0.6 14.37 1.5*** 10.57 1.0 11.27 1.1
Anteromedial nuclei AM 6.77 0.3 10.17 0.7*** 7.47 0.6 7.87 0.8
Reticular nuclei Rt 6.47 0.3 10.47 0.9*** 7.57 0.6 7.77 0.8
Paraventricular nuclei PVA 6.57 0.2 10.27 1.1*** 7.27 0.6 7.57 0.9
Ventroposterior medial thalamus VPL 6.57 0.5 9.57 0.8*** 6.77 0.5 7.17 0.8
Ventroposterior lateral thalamus VPM 6.87 0.7 9.97 0.9*** 6.97 0.8 7.77 0.8
Lateral habenular nucleus LHb 8.47 0.6 12.17 1.2* 8.17 0.6 9.37 1.1
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triphosphate (ATP) consumption (Purdon and Rapoport,
1998; Rapoport, 2001). Large changes in [3H]AA incorpora-
tion into the brain in contrast to small changes in rCMRglc

have also been noted in rats administered the muscarinic
agonist arecoline or the dopaminergic D2 agonist quinpirol
(Hayakawa et al, 2001; Nariai et al, 1991; Orzi et al, 1988;
Wooten and Collins, 1981).

Recall that PLA2 can be activated when a ligand binds to
any of a number of receptor subtypes, including 5-HT2

receptors (Axelrod, 1995; Cooper et al, 1996; Felder et al,
1990). 5-HT2 receptors are widely distributed in rat brain
(Appel et al, 1990; Morilak et al, 1993; Pazos and Palacios,
1985). High densities are reported in cerebral cortex,
olfactory and pyriform cortex, nucleus accumbens, cau-
date-putamen body and tail, dentate gyrus of hippocampus,
and medial mammillary nucleus of hypothalamus. In the
neocortex, highest densities are in layer IV. Frontal and
motor cortical regions have higher densities than other
cortical regions, whereas densities are comparatively low in
the caudate-putamen head, globus pallidus, red nuclei,
septal nuclei, and most parts of the hippocampus (McKenna
et al, 1989; McKenna and Peroutka, 1989), thalamus,
hypothalamus, midbrain, brain stem, and spinal cord.

The most intense increments in k* in response to DOI
(Figure 1, Table 1) were seen in brain regions having high
densities of 5-HT2A compared with 5-HT2C binding sites

(Cooper et al, 1996; Li et al, 2001; Pazos and Palacios, 1985).
High densities of 5-HT2A binding sites are found in
neocortical areas (layer IV), amygdala and midbrain (lateral
amygdaloid nucleus, medial amygdaloid nucleus), and CA1
and CA3 regions of the hippocampus, with lesser densities
in the caudate-putamen. There are fewer 5-HT2C binding
sites in rodent brain; they are found in the hypothalamus,
amygdala and hippocampus, but minimally in the neocortex
(except for the temporal horn). The correspondence
between the brain distributions of PLA2 activation by DOI
and of 5-HT2A receptors could be further examined using
DOI and altanserin, a selective 5-HT2A blocker (Hoyer et al,
1995; Leysen et al, 1988; PDSP Drug Database, 2000; Roth et
al, 2000), or by studying DOI responses in a 5-HT2A-
receptor knockout mouse (Lira et al, 2001).

The choroid plexus has more than four-fold higher
densities of 5-HT2C binding sites than brain parenchymal
regions as well as high levels of 5-HT2C mRNA and 5-HT2A

binding sites (Kaufman et al, 1995; Li et al, 2001). The six-
to 10-fold greater control value for k* in the choroid plexus
than in brain parenchymal regions, the marked increment
in this k* in response to DOI, and the ability of chronic
mianserin to block this increment suggest that serotonin-
related PLA2 signaling plays an important role in choroid
plexus function, particularly secretion of cerebrospinal
fluid. On the other hand, serotonin is reported to decrease

Brain regions Abbreviation Control DOI Mianserin Mianserin +DOI

Medial habenular nucleus MHb 9.17 0.6 13.17 1.2* 9.27 0.8 9.87 1.2
Medial geniculate nucleus MG 6.67 0.3 10.77 1.1*** 6.77 0.5 7.87 0.8

Hypothalamus
Supraoptic nuclei SO 14.57 1.2 19.37 3.1* 14.77 1.2 13.17 1.8
Subfornical organ SFO 9.67 0.5 19.57 2.2*** 12.17 1.2 14.67 1.6
Lateral nuclei LH 4.87 0.3 7.47 0.5*** 5.07 0.5 5.67 0.7
Anterior nuclei Ahy 5.27 0.3 7.97 0.5*** 5.57 0.5 5.87 0.7
Periventricular nuclei Pe 7.87 1.3 9.87 0.8 8.17 1.2 7.97 1.1
Arcuate nuclei Arc 5.57 0.4 8.67 0.5*** 5.87 0.7 6.87 0.8
Ventromedial nuclei VMH 5.17 0.2 8.17 0.5*** 5.37 0.5 6.17 0.6
Posterior nuclei PH 6.67 0.3 10.17 0.8*** 6.87 0.5 7.57 0.8
Mammillary nucleus MM 5.97 0.4 8.57 0.7* 6.07 0.7 6.27 0.9
Medial forebrain bundle mfb 5.17 0.3 7.97 0.5*** 5.37 0.5 5.67 0.7
Median eminence ME 12.77 1.6 16.07 2.5 12.37 2.5 12.57 1.9

Brainstem and spinal cord
Raphe magnus nuclei RMg 6.17 0.5 10.67 1.4*** 6.67 0.7 6.67 0 0.9
Raphe pallidus nuclei Rpa 7.17 0.8 10.77 1.2* 6.27 0.6 6.67 1.0
Raphe median nuclei MnR 6.17 0.5 11.17 1.2*** 6.77 0.9 7.27 1.0
Raphe dorsal nuclei DR 7.67 0.6 12.87 1.3*** 7.97 1.0 9.07 1.2
Locus coeruleus LC 8.97 0.5 14.67 1.6*** 9.57 0.9 9.77 1.2
Cochlear nucleus VCO,GrCo 10.17 0.7 16.27 1.5*** 10.57 1.2 11.27 1.6
Vestibular nucleus (medial) MVe 11.87 0.7 19.07 1.9*** 12.17 1.2 12.87 1.8
Inferior colliculus CICVl 10.37 0.4 18.77 2.2*** 12.77 1.3 12.77 1.8
Superior colliculus SuG 10.07 0.9 16.97 1.2*** 11.27 0.8 10.77 1.0
Pretectal area PPT 10.77 1.2 18.07 1.0*** 12.17 1.9 12.47 1.6
Pedunculopontine nucleus PPTGg 5.07 0.6 9.07 1.0*** 5.57 0.7 5.97 0.9
Deep layers of superior colliculus SC 10.07 0.8 14.27 1.3* 9.77 0.7 11.77 1.0
Flocculus FI 9.27 0.5 15.407 1.57*** 10.477 1.18 10.477 1.62
Interpeduncular nucleus IPC 9.17 0.5 13.77 1.7* 8.67 0.8 10.97 1.2
Spinal tract V nucleus Sp51 7.37 0.6 10.97 1.2 7.77 0.7 7.27 1.2
Choroid plexus ChP 67.87 3.2 92.67 9.7* 76.77 6.3 73.37 7.9

k* values are mean7 S.E.M (n¼ 9–10). Abbreviations according to Paxinos and Watson (1987). One-way ANOVA and Dunnett’s multiple comparison test were
used. Rats treated with saline (controls) were compared with each group. Differs significantly from control mean: *po0.05; ***po0.001.

Table 2 Continued
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cerebrospinal fluid secretion by increasing phosphorylation
of Na+, K+-ATPase by protein kinase C following activation
of PLC (Conn and Sanders-Bush, 1986a; Fisone et al, 1995,
1998), or through Ca2+-dependent activation of PLA2

(Kaufman et al, 1995). The uptake mechanism of [3H]AA
into the choroid plexus may differ from that into brain, as
the plexus, unlike the brain parenchyma, has a leaky
vasculature that can allow protein-bound [3H]AA to access
directly the choroid epithelium (Rapoport, 1976).

The DOI dose chosen in the present study may have been
too large to identify PLA2 signaling solely at 5-HT2

receptors, because of downstream activation of dopaminer-
gic D2 and other receptors also coupled to PLA2 (see the
Introduction). A smaller dose may help in this regard.
Although the affinities of both the (+) and (�) stereo-
isomers of DOI are reported to be equivalent at 5-HT2

receptors (Glennon, 1986, 1987; PDSP Drug Database, 2000;
Pranzatelli, 1990; Roth et al, 2000), as far as we know the
affinities of the two stereoisomers at other receptors
coupled to PLA2 have not been examined. DOI can increase
amphetamine-induced dopamine release in the brain
(Ichikawa and Meltzer, 1995), brain extracellular dopamine
and noradrenaline concentrations (Gobert and Millan,
1999), and dopamine turnover (Gaggi et al, 1997), and
DOI will activate local g-aminobutyric acid (GABA) inputs
to serotonergic neurons in the dorsal raphe nucleus (Liu et
al, 2000). 5-HT2 receptor activation can also inhibit
glutamate release from rat cerebellar mossy fibers (Marcoli
et al, 2001) and the release of acetylcholine in the hippo-
campus and neocortex (Feuerstein et al, 1996), which may
explain DOI’s inhibition of rCMRglc (Freo et al, 1991, 1992).

In summary, our results suggest that labeled AA can be
used to examine in vivo brain PLA2 signaling initiated by
serotonergic drugs. Increments in k* for [3H]AA in
response to DOI largely correspond to the distribution of
5-HT2A binding sites in the brain, although downstream
receptors coupled to PLA2 are probably activated as well.
Chronic mianserin, a 5-HT2 agonist known to inhibit the 5-
HT2 syndrome, blocks [3H]AA incorporation completely in
response to 2.5 mg/kg i.p. DOI. Imaging information
gathered using labeled AA is clearly distinct from that
using labeled 2-deoxy-d-glucose, and specific to PLA2

activation rather than to general brain functional activity.
As a result of this, it might be worthwhile to extend the fatty
acid method to examine PLA2 signaling in the human brain
by means of positron emission tomography (Chang et al,
1997; Giovacchini et al, 2001).
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