Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hsp90-inhibitor geldanamycin abrogates G2 arrest in p53-negative leukemia cell lines through the depletion of Chk1

Abstract

Checkpoint protein Chk1 has been identified as an Hsp90 client. Treatment with 100 nM geldanamycin (GM) for 24 h markedly reduced the Chk1 amount in Jurkat and ML-1 leukemia cell lines. Because Chk1 plays a central role in G2 checkpoint, we added GM to G2-arrested Jurkat and HL-60 cells pretreated with 50 nM doxorubicin for 24 h. GM slowly released both cell lines from doxorubicin-induced G2 arrest into G1 phase. GM also abrogated ICRF-193-induced decatenation G2 checkpoint in Jurkat and HL-60 cells. Western blot analysis showed that addition of GM attenuates doxorubicin- and ICRF-193-induced Chk1 phosphorylation at Ser345. GM, however, failed to abrogate G2 arrest in p53-positive ML-1 cells maybe due to the p21 induction. GM released HeLa cells from doxorubicin-induced G2 arrest but trapped them at M phase. Flow cytometric analysis showed that addition of GM converted doxorubicin-induced necrosis into apoptosis in Jurkat cells. Colony assay indicated that although GM has a weak cytotoxic effect as a single agent, it dramatically intensifies the cytotoxicity of doxorubicin and ICRF-193 in Jurkat and HL-60 cells. These results suggest that abrogation of G2 checkpoint by GM may play a central role in sensitizing p53-negative tumor cells to DNA-damaging and decatenation-inhibiting agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aligue R, Akhavan-Niak H, Russell P . (1994). A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J 13: 6099–6106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arlander SJH, Eapen AK, Vroman BT, McDonald RJ, Toft DO, Karnitz LM . (2003). Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem 278: 52572–52577.

    Article  CAS  PubMed  Google Scholar 

  • Bisht KS, Bradbury CM, Mattson D, Kaushal A, Sowers A, Markovina S et al. (2003). Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res 63: 8984–8995.

    CAS  PubMed  Google Scholar 

  • Broemer M, Krappmann D, Scheidereit C . (2004). Requirement of Hsp90 activity for IκB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kB activation. Oncogene 23: 5378–5386.

    Article  CAS  PubMed  Google Scholar 

  • Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C et al. (2003). Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nat Cell Biol 5: 545–551.

    Article  CAS  PubMed  Google Scholar 

  • Bull EEA, Dote H, Brady KJ, Burgan WE, Carter DJ, Cerra MA et al. (2004). Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin. Clin Cancer Res 10: 8077–8084.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Takeyama N, Brady G, Watson AJM, Dive C . (1998). Blood cells with reduced mitochondrial membrane potential and cytosolic cytochrome C can survive and maintain clonogenicity given appropriate signals to suppress apoptosis. Blood 92: 4545–4553.

    CAS  PubMed  Google Scholar 

  • de Cárcer G . (2004). Heat shock protein 90 regulates the metaphase-anaphase transition in a polo-like kinase-dependent manner. Cancer Res 64: 5106–5112.

    Article  PubMed  Google Scholar 

  • Deming PB, Cistulli CA, Zhao H, Graves PR, Piwnica-Worms H, Paules RS et al. (2001). The human decatenation checkpoint. Proc Natl Acad Sci USA 98: 12044–12049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Descombbes P, Nigg EA . (1998). The polo-like kinase Plx 1 is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts. EMBO J 17: 1328–1335.

    Article  Google Scholar 

  • Elledge SJ . (1996). Cell cycle checkpoints: preventing an identity crisis. Science 274: 1664–1672.

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Smith ML, Rivet II DJ, Duba D, Zhan Q, Kohn KW et al. (1995). Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 55: 1649–1654.

    CAS  PubMed  Google Scholar 

  • Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL . (2002). BCR-ABL point mutations isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 100: 3041–3044.

    Article  CAS  PubMed  Google Scholar 

  • Graves PR, Yu L, Schwarz JK, Gales J, Sauaville EA, O'Connor PM et al. (2000). The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275: 5600–5605.

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Addison E, North JM, Lowdell MW, Hoffbrand AV, Mehta AB et al. (2004). Geldanamycin and herbimycin A induce apoptotic killing of B chronic lymphocytic leukemia cells and augment the cells’ sensitivity to cytotoxic drugs. Blood 103: 1855–1861.

    Article  CAS  PubMed  Google Scholar 

  • Kawabe T . (2004). G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3: 513–519.

    CAS  PubMed  Google Scholar 

  • King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, Kirschner MW et al. (1995). A 20S complex containing CDC27 and CDC16 catalyzes the mitotic-specific conjugation of ubiquitin to cyclin B. Cell 81: 279–288.

    Article  CAS  PubMed  Google Scholar 

  • Kohn EA, Yoo CJ, Eastman A . (2003). The protein kinase C inhibitor Gö6976 is a potent inhibitor of DNA damage-induced S and G2 cell cycle checkpoints. Cancer Res 63: 31–35.

    CAS  PubMed  Google Scholar 

  • Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L et al. (2000). Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-κB activation. J Biol Chem 75: 10519–10526.

    Article  Google Scholar 

  • Ling YH, Tornos C, Perez-Soler R . (1998). Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis. J Biol Chem 273: 18984–18991.

    Article  CAS  PubMed  Google Scholar 

  • Mesa RA, Loegering D, Powell HL, Flatten K, Arlander SJH, Dai NT et al. (2005). Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood 106: 318–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minami Y, Kiyoi H, Yamamoto K, Ueda R, Saito H, Naoe T . (2002). Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia 16: 1535–1540.

    Article  CAS  PubMed  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE et al. (2006). Antimyeloma activity of heat shock protein-90 inhibition. Blood 107: 1092–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Münster PN, Srethapakdi M, Moasser MM, Rosen N . (2001). Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. Cancer Res 61: 2945–2952.

    PubMed  Google Scholar 

  • Neckers L . (2002). Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8: S55–S61.

    Article  CAS  PubMed  Google Scholar 

  • Nimmanapalli R, O'Bryan E, Bhalla K . (2001). Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 61: 1799–1804.

    CAS  PubMed  Google Scholar 

  • Passalaris TM, Benanti JA, Gewin L, Kiyono T, Galloway DA . (1999). The G2 checkpoint is maintained by redundant pathways. Moll Cell Biol 19: 5872–5881.

    Article  CAS  Google Scholar 

  • Pearl LH, Prodromou C . (2001). Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv Protein Chem 59: 157–186.

    Article  CAS  PubMed  Google Scholar 

  • Peng C-Y, Graves P, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501–1505.

    Article  CAS  PubMed  Google Scholar 

  • Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D et al. (1995). Differential sensitivity of p53(−) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 55: 1643–1648.

    CAS  PubMed  Google Scholar 

  • Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH . (1997). Identification and structural characterization of the ATP/ADP binding site in the Hsp90 molecular chaperone. Cell 90: 65–75.

    Article  CAS  PubMed  Google Scholar 

  • Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE, Groudine M . (1995). Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. Cancer Res 55: 1639–1642.

    CAS  PubMed  Google Scholar 

  • Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H et al. (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM et al. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Srethapakdi M, Liu F, Tavorath R, Rosen N . (2000). Inhibition of Hsp90 function by ansamycins causes retinoblastoma gene product-dependent G1 arrest. Cancer Res 60: 3940–3946.

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Tamayose K, Sasaki M, Hayashi K, Oshimi K . (2002). Low-dose doxorubicin-induced necrosis in Jurkat cells and its acceleration and conversion to apoptosis by antioxidants. Br J Haematol 118: 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Tamayose K, Takagi M, Yamada K, Sasaki M, Mizutani S et al. (2000). Activation of an ataxia telangiectasia mutation-dependent intra-S-phase checkpoint by anti-tumor drugs in HL-60 and human lymphoblastoid cells. Br J Haematol 110: 819–825.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Yamada K, Egashira M, Yazaki Y, Hirai H, Kikuchi A et al. (1998). Temporal and spatial distribution of DNA topoisomerase II alters during proliferation, differentiation, and apoptosis in HL-60 cells. Blood 91: 1407–1417.

    CAS  PubMed  Google Scholar 

  • Tse AN, Schwartz GK . (2004). Potentiation of cytotoxicity of topoisomerase I poison by concurrent and sequential treatment with the checkpoint inhibitor UCN-01 involves disparate mechanisms resulting in either p53-independent clonogenic suppression or p53-dependent mitotic catastrophe. Cancer Res 64: 6635–6644.

    Article  CAS  PubMed  Google Scholar 

  • Weinert T . (1997). A DNA damage checkpoint meets the cell cycle engine. Science 277: 1450–1451.

    Article  CAS  PubMed  Google Scholar 

  • Workman P . (2004). Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206: 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Yao S-L, Akhtra AJ, McKenna KA, Bedi GC, Sidransky D, Mabry M et al. (1996). Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nat Med 2: 1140–1143.

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Bower MJ, McDevitt PJ, Zhao H, Davis ST, Johanson KO et al. (2002). Structural basis for Chk1 inhibition by UCN-01. J Biol Chem 277: 46609–46615.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Education, Science, Sports and Culture in Japan. We thank Ms Keiko Hayashi and Ms Hiroko Hiraike for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Sugimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, K., Sasaki, M., Isobe, Y. et al. Hsp90-inhibitor geldanamycin abrogates G2 arrest in p53-negative leukemia cell lines through the depletion of Chk1. Oncogene 27, 3091–3101 (2008). https://doi.org/10.1038/sj.onc.1210978

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210978

Keywords

This article is cited by

Search

Quick links