Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The leukemogenic CALM/AF10 fusion protein alters the subcellular localization of the lymphoid regulator Ikaros

Abstract

The t(10;11)(p13;q14) translocation leads to the fusion of the CALM and AF10 genes. This translocation can be found as the sole cytogenetic abnormality in acute lymphoblastic leukemia, acute myeloid leukemia and in malignant lymphomas. The expression of CALM/AF10 in primary murine bone marrow cells results in the development of an aggressive leukemia in a murine bone marrow transplantation model. Using a yeast two-hybrid screen, we identified the lymphoid regulator Ikaros as an AF10 interacting protein. Interestingly, Ikaros is required for normal development of lymphocytes, and aberrant expression of Ikaros has been found in leukemia. In a murine model, the expression of a dominant negative isoform of Ikaros causes leukemias and lymphomas. The Ikaros interaction domain of AF10 was mapped to the leucine zipper domain of AF10, which is required for malignant transformation both by the CALM/AF10 and the MLL/AF10 fusion proteins. The interaction between AF10 and Ikaros was confirmed by GST pull down and co-immunoprecipitation. Coexpression of CALM/AF10 but not of AF10 alters the subcellular localization of Ikaros in murine fibroblasts. The transcriptional repressor activity of Ikaros is reduced by AF10. These results suggest that CALM/AF10 might interfere with normal Ikaros function, and thereby block lymphoid differentiation in CALM/AF10 positive leukemias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Andrews NC, Faller DV . (1991). A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19: 2499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archangelo LF, Glasner J, Krause A, Bohlander SK . (2006). The novel CALM interactor CATS influences the subcellular localization of the leukemogenic fusion protein CALM/AF10. Oncogene 25: 4099–4109.

    Article  CAS  PubMed  Google Scholar 

  • Bohlander SK, Muschinsky V, Schrader K, Siebert R, Schlegelberger B, Harder L et al. (2000). Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia 14: 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG . (1997). Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91: 845–854.

    Article  CAS  PubMed  Google Scholar 

  • Caudell D, Zhang Z, Chung YJ, Aplan PD . (2007). Expression of a CALM-AF10 fusion gene leads to Hoxa cluster overexpression and acute leukemia in transgenic mice. Cancer Res 67: 8022–8031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin T, Ayton P, Bernard OA, Saha V, Della VV, Hillion J et al. (1995). A novel class of zinc finger/leucine zipper genes identified from the molecular cloning of the t(10;11) translocation in acute leukemia. Blood 85: 1435–1441.

    CAS  PubMed  Google Scholar 

  • Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST . (2000). Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 14: 2146–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debernardi S, Bassini A, Jones LK, Chaplin T, Linder B, de Bruijn DR et al. (2002). The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 99: 275–281.

    Article  PubMed  Google Scholar 

  • Deshpande AJ, Cusan M, Rawat VP, Reuter H, Krause A, Pott C et al. (2006). Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. Cancer Cell 10: 363–374.

    Article  CAS  PubMed  Google Scholar 

  • DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML . (2002). The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 99: 3780–3785.

    Article  CAS  PubMed  Google Scholar 

  • Dreyling MH, Martinez-Climent JA, Zheng M, Mao J, Rowley JD, Bohlander SK . (1996). The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci USA 93: 4804–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S et al. (1994). The Ikaros gene is required for the development of all lymphoid lineages. Cell 79: 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos K, Moore DD, Derfler B . (1992). Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258: 808–812.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-del Arco P, Koipally J, Georgopoulos K . (2005). Ikaros SUMOylation: switching out of repression. Mol Cell Biol 25: 2688–2697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-del Arco P, Maki K, Georgopoulos K . (2004). Phosphorylation controls Ikaros's ability to negatively regulate the G(1)-S transition. Mol Cell Biol 24: 2797–2807.

    Article  CAS  PubMed  Google Scholar 

  • Hahm K, Ernst P, Lo K, Kim GS, Turck C, Smale ST . (1994). The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol Cell Biol 14: 7111–7123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 (Suppl 1): S96–S104.

    Article  PubMed  Google Scholar 

  • Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E et al. (1999). Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10: 345–355.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Thirman MJ, Rowley JD . (1995). U937 cell line has a t(10;11)(p13–14;q14–21) rather than a deletion of 11q. Genes Chromosomes Cancer 13: 217–218.

    Article  CAS  PubMed  Google Scholar 

  • Koipally J, Heller EJ, Seavitt JR, Georgopoulos K . (2002). Unconventional potentiation of gene expression by Ikaros. J Biol Chem 277: 13007–13015.

    Article  CAS  PubMed  Google Scholar 

  • Linder B, Gerlach N, Jackle H . (2001). The Drosophila homolog of the human AF10 is an HP1-interacting suppressor of position effect variegation. EMBO Rep 2: 211–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linder B, Newman R, Jones LK, Debernardi S, Young BD, Freemont P et al. (2000). Biochemical analyses of the AF10 protein: the extended LAP/PHD-finger mediates oligomerisation. J Mol Biol 299: 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Martin DG, Baetz K, Shi X, Walter KL, Macdonald VE, Wlodarski MJ et al. (2006). The Yng1p PHD finger is a methyl-histone binding module that recognizes lysine 4 methylated histone H3. Mol Cell Biol 26: 7871–7879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellor J . (2006). It takes a PHD to read the histone code. Cell 126: 22–24.

    Article  CAS  PubMed  Google Scholar 

  • Molnar A, Georgopoulos K . (1994). The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol 14: 8292–8303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nietfeld W, Meyerhans A . (1996). Cloning and sequencing of hIk-1, a cDNA encoding a human homologue of mouse Ikaros/LyF-1. Immunol Lett 49: 139–141.

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. (2005). hDOT1L links histone methylation to leukemogenesis. Cell 121: 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y . (2006). Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol 8: 1017–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivero S, Maroc C, Beillard E, Gabert J, Nietfeld W, Chabannon C et al. (2000). Detection of different Ikaros isoforms in human leukaemias using real-time quantitative polymerase chain reaction. Br J Haematol 110: 826–830.

    Article  CAS  PubMed  Google Scholar 

  • Payne KJ, Huang G, Sahakian E, Zhu JY, Barteneva NS, Barsky LW et al. (2003). Ikaros isoform x is selectively expressed in myeloid differentiation. J Immunol 170: 3091–3098.

    Article  CAS  PubMed  Google Scholar 

  • Payne KJ, Nicolas JH, Zhu JY, Barsky LW, Crooks GM . (2001). Cutting edge: predominant expression of a novel Ikaros isoform in normal human hemopoiesis. J Immunol 167: 1867–1870.

    Article  CAS  PubMed  Google Scholar 

  • Rabbitts TH . (1994). Chromosomal translocations in human cancer. Nature 372: 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Rebollo A, Schmitt C . (2003). Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol 81: 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Ronni T, Payne KJ, Ho S, Bradley MN, Dorsam G, Dovat S . (2007). Human ikaros function in activated T cells is regulated by coordinated expression of its largest isoforms. J Biol Chem 282: 2538–2547.

    Article  CAS  PubMed  Google Scholar 

  • Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. (2004). Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36: 624–630.

    Article  CAS  PubMed  Google Scholar 

  • Rowley JD . (1990). Recurring chromosome abnormalities in leukemia and lymphoma. Semin Hematol 27: 122–136.

    CAS  PubMed  Google Scholar 

  • Schoch C, Kohlmann A, Schnittger S, Brors B, Dugas M, Mergenthaler S et al. (2002). Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA 99: 10008–10013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Crotty ML, Sensel M, Sather H, Navara C, Nachman J et al. (1999a). Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin Cancer Res 5: 2112–2120.

    CAS  PubMed  Google Scholar 

  • Sun L, Goodman PA, Wood CM, Crotty ML, Sensel M, Sather H et al. (1999b). Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J Clin Oncol 17: 3753–3766.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A et al. (1999c). Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA 96: 680–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Liu A, Georgopoulos K . (1996). Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 15: 5358–5369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebar F, Bohlander SK, Sorkin A . (1999). Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell 10: 2687–2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinh LA, Ferrini R, Cobb BS, Weinmann AS, Hahm K, Ernst P et al. (2001). Down-regulation of TDT transcription in CD4(+)CD8(+) thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev 15: 1817–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westman BJ, Mackay JP, Gell D . (2002). Ikaros: a key regulator of haematopoiesis. Int J Biochem Cell Biol 34: 1304–1307.

    Article  CAS  PubMed  Google Scholar 

  • Winandy S, Wu P, Georgopoulos K . (1995). A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83: 289–299.

    Article  CAS  PubMed  Google Scholar 

  • Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J et al. (2006). A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442: 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K . (2006). Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol 7: 382–391.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pablo Gomez, Katia Georgopoulos and Steven Smale for sending us Ikaros materials. Yihui Lin and Guoliang Xu generously provided AF10 constructs. Brigitte Mack and Manuel Deutsch kindly shared their expertise with the confocal microscope. This project was supported by the German José-Carreras-Leukemia Foundation with a scholarship (F05/06) to Philipp Greif and by a NGFN (Bundesministerium für Bildung und Forschung) grant to SK Bohlander.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Bohlander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greif, P., Tizazu, B., Krause, A. et al. The leukemogenic CALM/AF10 fusion protein alters the subcellular localization of the lymphoid regulator Ikaros. Oncogene 27, 2886–2896 (2008). https://doi.org/10.1038/sj.onc.1210945

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210945

Keywords

This article is cited by

Search

Quick links