Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas

Abstract

The majority of anaplastic large cell lymphomas (ALCLs) express the nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) fusion protein, which is oncogenic due to its constitutive tyrosine kinase activity. Transformation by NPM-ALK not only increases proliferation, but also modifies cell shape and motility in both lymphoid and fibroblastic cells. We report that the Rac1 GTPase, a known cytoskeletal regulator, is activated by NPM-ALK in ALCL cell lines (Karpas 299 and Cost) and transfected cells (lymphoid Ba/F3 cells, NIH-3T3 fibroblasts). We have identified Vav3 as one of the exchange factors involved in Rac1 activation. Stimulation of Vav3 and Rac1 by NPM-ALK is under the control of Src kinases. It involves formation of a signaling complex between NPM-ALK, pp60c-src, Lyn and Vav3, in which Vav3 associates with tyrosine 343 of NPM-ALK via its SH2 domain. Moreover, Vav3 is phosphorylated in NPM-ALK positive biopsies from patients suffering from ALCL, demonstrating the pathological relevance of this observation. The use of Vav3-specific shRNA and a dominant negative Rac1 mutant demonstrates the central role of GTPases in NPM-ALK elicited motility and invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ambrogio C, Voena C, Manazza AD, Piva R, Riera L, Barberis L et al. (2005). p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood 106: 3907–3916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin HM, Medeiros LJ, Ma Y, Feretzaki M, Das P, Leventaki V et al. (2003). Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene 22: 5399–5407.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong F, Duplantier MM, Trempat P, Hieblot C, Lamant L, Espinos E et al. (2004). Differential effects of X-ALK fusion proteins on proliferation, transformation, and invasion properties of NIH3T3 cells. Oncogene 23: 6071–6082.

    Article  CAS  PubMed  Google Scholar 

  • Aznar S, Fernandez-Valeron P, Espina C, Lacal JC . (2004). Rho GTPases: potential candidates for anticancer therapy. Cancer Lett 206: 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Bai RY, Dieter P, Peschel C, Morris SW, Duyster J . (1998). Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 18: 6951–6961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J . (2000). Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96: 4319–4327.

    CAS  PubMed  Google Scholar 

  • Bassermann F, Jahn T, Miething C, Seipel P, Bai RY, Coutinho S et al. (2002). Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway. J Biol Chem 277: 12437–12445.

    Article  CAS  PubMed  Google Scholar 

  • Benard V, Bokoch GM . (2002). Assay of Cdc42, Rac, and Rho GTPase activation by affinity methods. Methods Enzymol 345: 349–359.

    Article  PubMed  Google Scholar 

  • Bustelo XR . (2000). Regulatory and signaling properties of the Vav family. Mol Cell Biol 20: 1461–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustelo XR . (2001). Vav proteins, adaptors and cell signaling. Oncogene 20: 6372–6381.

    Article  CAS  PubMed  Google Scholar 

  • Charvet C, Canonigo AJ, Billadeau DD, Altman A . (2005). Membrane localization and function of Vav3 in T cells depend on its association with the adapter SLP-76. J Biol Chem 280: 15289–15299.

    Article  CAS  PubMed  Google Scholar 

  • Chiarle R, Gong JZ, Guasparri I, Pesci A, Cai J, Liu J et al. (2003). NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101: 1919–1927.

    Article  CAS  PubMed  Google Scholar 

  • Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R et al. (2005). Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11: 623–629.

    Article  CAS  PubMed  Google Scholar 

  • Cho YJ, Zhang B, Kaartinen V, Haataja L, de Curtis I, Groffen J et al. (2005). Generation of rac3 null mutant mice: role of Rac3 in Bcr/Abl-caused lymphoblastic leukemia. Mol Cell Biol 25: 5777–5785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L et al. (2005). Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest 115: 369–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crockett DK, Lin Z, Elenitoba-Johnson KS, Lim MS . (2004). Identification of NPM-ALK interacting proteins by tandem mass spectrometry. Oncogene 23: 2617–2629.

    Article  CAS  PubMed  Google Scholar 

  • Cussac D, Greenland C, Roche S, Bai RY, Duyster J, Morris SW et al. (2004). Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity. Blood 103: 1464–1471.

    Article  CAS  PubMed  Google Scholar 

  • Cussac D, Pichereaux C, Colomba A, Capilla F, Pont F, Gaits-Iacovoni F et al. (2006). Proteomic analysis of anaplastic lymphoma cell lines: identification of potential tumour markers. Proteomics 6: 3210–3222.

    Article  CAS  PubMed  Google Scholar 

  • Duyster J, Bai RY, Morris SW . (2001). Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 20: 5623–5637.

    Article  CAS  PubMed  Google Scholar 

  • Falini B . (2001). Anaplastic large cell lymphoma: pathological, molecular and clinical features. Br J Haematol 114: 741–760.

    Article  CAS  PubMed  Google Scholar 

  • Falini B, Bigerna B, Fizzotti M, Pulford K, Pileri SA, Delsol G et al. (1998). ALK expression defines a distinct group of T/null lymphomas (‘ALK lymphomas’) with a wide morphological spectrum. Am J Pathol 153: 875–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawal M, Armstrong F, Ollier S, Dupont H, Touriol C, Monsarrat B et al. (2006). A ‘liaison dangereuse’ between AUF1/hnRNPD and the oncogenic tyrosine kinase NPM-ALK. Blood 108: 2780–2788.

    Article  CAS  PubMed  Google Scholar 

  • Fritz G, Kaina B . (2006). Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets 6: 1–14.

    CAS  PubMed  Google Scholar 

  • Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S et al. (1996). Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci USA 93: 4181–4186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y . (2004). Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101: 7618–7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genth H, Huelsenbeck J, Hartmann B, Hofmann F, Just I, Gerhard R . (2006). Cellular stability of Rho-GTPases glucosylated by Clostridium difficile toxin B. FEBS Lett 580: 3565–3569.

    Article  CAS  PubMed  Google Scholar 

  • Hall A . (1998). Rho GTPases and the actin cytoskeleton. Science 279: 509–514.

    Article  CAS  PubMed  Google Scholar 

  • Hall A . (2005). Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33: 891–895.

    Article  CAS  PubMed  Google Scholar 

  • Honorat JF, Ragab A, Lamant L, Delsol G, Ragab-Thomas J . (2006). SHP1 tyrosine phosphatase negatively regulates NPM-ALK tyrosine kinase signaling. Blood 107: 4130–4138.

    Article  CAS  PubMed  Google Scholar 

  • Hornstein I, Alcover A, Katzav S . (2004). Vav proteins, masters of the world of cytoskeleton organization. Cell Signal 16: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Lamant L, De Reynies A, Duplantier MM, Rickman DS, Sabourdy F, Giuriato S et al. (2006). Gene expression profiling of systemic anaplastic large cell lymphoma reveals differences depending on ALK status and two distinct morphological ALK+ subtypes. Blood 109: 2156–2164.

    Article  PubMed  Google Scholar 

  • Lamant L, Espinos E, Duplantier M, Dastugue N, Robert A, Allouche M et al. (2004). Establishment of a novel anaplastic large-cell lymphoma-cell line (COST) from a ‘small-cell variant’ of ALCL. Leukemia 18: 1693–1698.

    Article  CAS  PubMed  Google Scholar 

  • Lamant L, Meggetto F, al Saati T, Brugieres L, de Paillerets BB, Dastugue N et al. (1996). High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin's disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining. Blood 87: 284–291.

    CAS  PubMed  Google Scholar 

  • Lim MS, Elenitoba-Johnson KS . (2006). Mass spectrometry-based proteomic studies of human anaplastic large cell lymphoma. Mol Cell Proteomics 5: 1787–1798.

    Article  CAS  PubMed  Google Scholar 

  • Liu BP, Burridge K . (2000). Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not beta1 integrins. Mol Cell Biol 20: 7160–7169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorca O, Arias-Palomo E, Zugaza JL, Bustelo XR . (2005). Global conformational rearrangements during the activation of the GDP/GTP exchange factor Vav3. EMBO J 24: 1330–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzec M, Kasprzycka M, Liu X, Raghunath PN, Wlodarski P, Wasik MA . (2007). Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene 26: 813–821.

    Article  CAS  PubMed  Google Scholar 

  • Marzec M, Kasprzycka M, Ptasznik A, Wlodarski P, Zhang Q, Odum N et al. (2005). Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. Lab Invest 85: 1544–1554.

    Article  CAS  PubMed  Google Scholar 

  • Movilla N, Bustelo XR . (1999). Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 19: 7870–7885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit P, Breard J, Montalescot V, El Hadj NB, Levade T, Popoff M et al. (2003). Lethal toxin from Clostridium sordellii induces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells. Cell Microbiol 5: 761–771.

    Article  CAS  PubMed  Google Scholar 

  • Rottner K, Hall A, Small JV . (1999). Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 9: 640–648.

    Article  CAS  PubMed  Google Scholar 

  • Sahai E, Marshall CJ . (2002). RHO-GTPases and cancer. Nat Rev Cancer 2: 133–142.

    Article  PubMed  Google Scholar 

  • Theodorescu D, Sapinoso LM, Conaway MR, Oxford G, Hampton GM, Frierson Jr HF . (2004). Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clin Cancer Res 10: 3800–3806.

    Article  CAS  PubMed  Google Scholar 

  • Thompson MA, Stumph J, Henrickson SE, Rosenwald A, Wang Q, Olson S et al. (2005). Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum Pathol 36: 494–504.

    Article  CAS  PubMed  Google Scholar 

  • Titus B, Schwartz MA, Theodorescu D . (2005). Rho proteins in cell migration and metastasis. Crit Rev Eukaryot Gene Expr 15: 103–114.

    Article  CAS  PubMed  Google Scholar 

  • Zakaria S, Gomez TS, Savoy DN, McAdam S, Turner M, Abraham RT et al. (2004). Differential regulation of TCR-mediated gene transcription by Vav family members. J Exp Med 199: 429–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M et al. (2000). Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol 20: 9212–9224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Popoff for Clostridium lethal toxins. We are grateful to Dr H Tronchère, Dr S Manenti, Dr MP Gratacap, Dr C Racaud-Sultan and Dr M Plantavid for helpful discussions. AC and DR were financed by the ‘Ministère de la Recherche et de la Technologie’ and the ‘Association pour la Recherche sur le Cancer’. This work was supported by grants from the INSERM, ARC, ARECA, La Ligue contre le Cancer, the ‘Cancéropôle Grand Sud-Ouest’ and the ‘Institut National du Cancer’ (INCa), the Région Midi-Pyrénées and the ‘Pôle de Compétitivité Cancer-Bio Santé’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Gaits-Iacovoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colomba, A., Courilleau, D., Ramel, D. et al. Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas. Oncogene 27, 2728–2736 (2008). https://doi.org/10.1038/sj.onc.1210921

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210921

Keywords

This article is cited by

Search

Quick links