Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

TLR signaling by tumor and immune cells: a double-edged sword

Abstract

The tumor cell signaling pathways that trigger the uncontrolled proliferation, resistance to apoptosis, metastasis and escape from immune surveillance are partially understood. Toll-like receptors (TLRs), which recognize a variety of pathogen-associated molecular patterns, are centrally involved in the initiation of the innate and adaptive immune responses. However, recent evidence shows that functional TLRs are also expressed on a wide variety of tumors suggesting that TLRs may play important roles in tumor biology. Activation of tumor cell TLRs not only promotes tumor cell proliferation and resistance to apoptosis, but also enhances tumor cell invasion and metastasis by regulating metalloproteinases and integrins. Moreover, the activation of TLR signaling in tumor cells induces the synthesis of proinflammatory factors and immunosuppressive molecules, which enhance the resistance of tumor cells to cytotoxic lymphocyte attack and lead to immune evasion. Thus, the neoplastic process may usurp TLR signaling pathways to advance cancer progression, which suggests that targeting tumor TLR signaling pathways may open novel therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Abiko Y, Mitamura J, Nishimura M, Muramatsu T, Inoue T, Shimono M et al. (1999). Pattern of expression of beta-defensins in oral squamous cell carcinoma. Cancer Lett 143: 37–43.

    CAS  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O . (2006). Pathogen recognition and innate immunity. Cell 124: 783–801.

    Article  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738.

    CAS  Google Scholar 

  • Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD et al. (1999). Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285: 736–739.

    CAS  Google Scholar 

  • Andersen MH, Schrama D, Thor Straten P, Becker JC . (2006). Cytotoxic T cells. J Invest Dermatol 126: 32–41.

    CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW et al. (2000). Hsp70 stimulates cytokine production through a CD-14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6: 435–442.

    CAS  Google Scholar 

  • Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S et al. (2005). Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202: 1131–1139.

    CAS  Google Scholar 

  • Berg AA . (2002). Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 23: 509–512.

    Google Scholar 

  • Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O et al. (2002). Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298: 1025–1029.

    CAS  Google Scholar 

  • Bohnhorst J, Rasmussen T, Moen SH, Flottum M, Knudsen L, Borset M et al. (2006). Toll-like receptors mediate proliferation and survival of multiple myeloma cells. Leukemia 20: 1138–1144.

    CAS  Google Scholar 

  • Boule MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR . (2004). Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin–immunoglobulin G complexes. J Exp Med 199: 1631–1640.

    CAS  Google Scholar 

  • Camilo R, Capelozzi VL, Siqueira SA, Del Carlo Bernardi F . (2006). Expression of p63, keratin 5/6, keratin 7, and surfactant-A in non-small cell lung carcinomas. Hum Pathol 37: 542–546.

    CAS  Google Scholar 

  • Chen YC, Giovannucci E, Lazarus R, Kraft P, Ketkar S, Hunter DJ . (2005). Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res 65: 11771–11778.

    CAS  Google Scholar 

  • Cheng I, Plummer SJ, Casey G, Witte JS . (2007). Toll-like receptor 4 genetic variation and advanced prostate cancer risk. Cancer Epidemiol Biomarkers Prev 16: 352–355.

    CAS  Google Scholar 

  • Ciocca DR, Calderwood SK . (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10: 86–103.

    CAS  Google Scholar 

  • Craft N, Bruhn KW, Nguyen BD, Prins R, Lin JW, Liau LM et al. (2005). The TLR7 agonist imiquimod enhances the anti-melanoma effects of a recombinant Listeria monocytogenes vaccine. J Immunol 175: 1983–1990.

    CAS  Google Scholar 

  • Dan HC, Jiang K, Coppola D, Hamilton A, Nicosia SV, Sebti SM et al. (2004a). Phosphatidylinositol-3-OH kinase/AKT and survivin pathways as critical targets for geranylgeranyltransferase I inhibitor-induced apoptosis. Oncogene 23: 706–715.

    CAS  Google Scholar 

  • Dan HC, Sun M, Kaneko S, Feldman RI, Nicosia SV, Wang HG et al. (2004b). Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem 279: 5405–5412.

    CAS  Google Scholar 

  • Deane JA, Bolland S . (2006). Nucleic acid-sensing TLRs as modifiers of autoimmunity. J Immunol 177: 6573–6578.

    CAS  Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8: 793–800.

    CAS  Google Scholar 

  • Droemann D, Albrecht D, Gerdes J, Ulmer AJ, Branscheid D, Vollmer E et al. (2005). Human lung cancer cells express functionally active Toll-like receptor 9. Respir Res 6: 1–7.

    Google Scholar 

  • Ehlers M, Ravetch JV . (2007). Opposing effects of Toll-like receptor stimulation induce autoimmunity or tolerance. Trends Immunol 28: 74–79.

    CAS  Google Scholar 

  • Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A et al. (2007). Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13: 2836–2848.

    CAS  Google Scholar 

  • Ganz T, Weiss J . (1997). Antimicrobial peptides of phagocytes and epithelia. Semin Hematol 34: 343–354.

    CAS  Google Scholar 

  • Gotte M, Yip GW . (2006). Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66: 10233–10237.

    Google Scholar 

  • Gratas C, Tohma Y, Barnas C, Taniere P, Hainaut P, Ohgaki H . (1998). Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. Cancer Res 58: 2057–2062.

    CAS  Google Scholar 

  • Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M . (2002). Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 168: 5989–5992.

    CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  Google Scholar 

  • Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C et al. (2002). Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 101: 415–422.

    CAS  Google Scholar 

  • Hassan F, Islam S, Tumurkhuu G, Naiki Y, Koide N, Mori I et al. (2006). Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide. BMC Cancer 6: 281–287.

    Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103.

    CAS  Google Scholar 

  • He W, Liu Q, Wang L, Chen W, Li N, Cao X . (2007). TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44: 2850–2859.

    CAS  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 1526–1529.

    Article  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745.

    CAS  Google Scholar 

  • Hold GL, Rabkin CS, Chow WH, Smith MG, Gammon MD, Risch HA et al. (2007). A functional polymorphism of toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology 132: 905–912.

    CAS  Google Scholar 

  • Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH et al. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65: 5009–5014.

    CAS  Google Scholar 

  • Huang B, Zhao J, Shen S, Li H, He KL, Shen GX et al. (2007). Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res 67: 4346–4352.

    CAS  Google Scholar 

  • Iino N, Matsunaga T, Harada T, Igarashi S, Koyama I, Komoda T . (2007). Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue. Cell Tissue Res 328: 355–363.

    CAS  Google Scholar 

  • Ilvesaro JM, Merrell MA, Swain TM, Davidson J, Zayzafoon M, Harris KW et al. (2007). Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate 67: 774–781.

    CAS  Google Scholar 

  • Iwasaki A, Medzhitov R . (2004). Toll-like receptor control of the adaptive immune responses. Nat Immunol 5: 987–995.

    CAS  Google Scholar 

  • Jego G, Bataille R, Geffroy-Luseau A, Descamps G, Pellat-Deceunynck C . (2006). Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia 20: 1130–1137.

    CAS  Google Scholar 

  • Johnson GB, Brunn GJ, Kodaira Y, Platt JL . (2002). Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 168: 5233–5239.

    CAS  Google Scholar 

  • Kabelitz D . (2007). Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol 19: 39–45.

    CAS  Google Scholar 

  • Kariko K, Ni H, Capodici J, Lamphier M, Weissman D . (2004). mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279: 12542–12550.

    CAS  Google Scholar 

  • Kawai T, Akira S . (2005). Pathogen recognition with Toll-like receptors. Curr Opin Immunol 17: 338–344.

    CAS  Google Scholar 

  • Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S et al. (2006). TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66: 3859–3868.

    CAS  Google Scholar 

  • Khazaie K, von Boehmer H . (2006). The impact of CD4+CD25+ Treg on tumor specific CD8+ T cell cytotoxicity and cancer. Semin Cancer Biol 16: 124–136.

    CAS  Google Scholar 

  • Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA . (2000). Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164: 13–17.

    CAS  Google Scholar 

  • Krieg AM . (2007). Development of TLR9 agonists for cancer therapy. J Clin Invest 117: 1184–1194.

    CAS  Google Scholar 

  • Lee J, Chuang TH, Redecke V, She L, Pitha PM, Carson DA et al. (2003). Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci USA 100: 6646–6651.

    CAS  Google Scholar 

  • Lee JW, Choi JJ, Seo ES, Kim MJ, Kim WY, Choi CH et al. (2007). Increased toll-like receptor 9 expression in cervical neoplasia. Mol Carcinog 46: 941–947.

    CAS  Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA . (2006). Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24: 99–146.

    CAS  Google Scholar 

  • Liu H, Komai-Koma M, Xu D, Liew FY . (2006). Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci USA 103: 7048–7053.

    CAS  Google Scholar 

  • Liu Y, Huang B, Yuan Y, Gong W, Xiao H, Li D et al. (2007). Inhibition of hepatocarcinoma and tumor metastasis to liver by gene therapy with recombinant CBD-HepII polypeptide of fibronectin. Int J Cancer 121: 184–192.

    CAS  Google Scholar 

  • Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R . (2005). Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 52: 2936–2946.

    CAS  Google Scholar 

  • Lizee G, Radvanyi LG, Overwijk WW, Hwu P . (2006). Improving anti-tumor immune responses by circumventing immunoregulatory cells and mechanisms. Clin Cancer Res 12: 4794–4803.

    CAS  Google Scholar 

  • Marshak-Rothstein A . (2006). Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6: 823–835.

    CAS  Google Scholar 

  • Mellor A, Baban B, Chandler P, Manlapat A, Kahler D, Munn D . (2005). CpG oligonucleotides induce splenic CD19+ DCs to acquire IDO-dependent T cell regulatory functions via IFN signaling. J Immunol 175: 5601–5605.

    CAS  Google Scholar 

  • Merrell MA, Ilvesaro JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E et al. (2006). Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res 4: 437–447.

    CAS  Google Scholar 

  • Miyake K . (2007). Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19: 3–10.

    CAS  Google Scholar 

  • Molteni M, Marabella D, Orlandi C, Rossetti C . (2006). Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Lett 235: 75–83.

    CAS  Google Scholar 

  • Munn DH, Mellor AL . (2007). Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117: 1147–1154.

    CAS  Google Scholar 

  • Nieters A, Beckmann L, Deeg E, Becker N . (2006). Gene polymorphisms in Toll-like receptors, interleukin-10, and interleukin-10 receptor alpha and lymphoma risk. Genes Immun 7: 615–624.

    CAS  Google Scholar 

  • Ohara T, Morishita T, Suzuki H, Hibi T . (2006). Heterozygous Thr 135 Ala polymorphism at leucine-rich repeat (LRR) in genomic DNA of toll-like receptor 4 in patients with poorly-differentiated gastric adenocarcinomas. Int J Mol Med 18: 59–63.

    CAS  Google Scholar 

  • Okamoto M, Oshikawa T, Tano T, Ahmed SU, Kan S, Sasai A et al. (2006). Mechanism of anticancer host response induced by OK-432, a streptococcal preparation, mediated by phagocytosis and Toll-like receptor 4 signaling. J Immunother 29: 78–86.

    CAS  Google Scholar 

  • Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J et al. (2001). The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276: 10229–10233.

    CAS  Google Scholar 

  • O'Neill LA . (2006). How Toll-like receptors signal: what we know and what we don't know. Curr Opin Immunol 18: 3–9.

    CAS  Google Scholar 

  • Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A et al. (2004). Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279: 7370–7377.

    CAS  Google Scholar 

  • Pasare C, Medzhitov R . (2003). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299: 1033–1036.

    CAS  Google Scholar 

  • Pashenkov M, Goess G, Wagner C, Hormann M, Jandl T, Moser A et al. (2006). Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol 24: 5716–5724.

    CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–2088.

    CAS  Google Scholar 

  • Rifkin IR, Leaderbetter EA, Busconi L, Viglanti G, Marshk-Rothstein A . (2005). Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 204: 27–42.

    CAS  Google Scholar 

  • Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, Wunderink LU et al. (2006). Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 176: 7021–7027.

    CAS  Google Scholar 

  • Rouas-Freiss N, Moreau P, Menier C, Carosella ED . (2003). HLA-G in cancer: a way to turn off the immune system. Semin Cancer Biol 13: 325–336.

    CAS  Google Scholar 

  • Rybarczyk BJ, Simpson-Haidaris PJ . (2000). Fibrinogen assembly, secretion, and deposition into extracellular matrix by MCF-7 human breast carcinoma cells. Cancer Res 60: 2033–2039.

    CAS  Google Scholar 

  • Sanderson RD, Yang Y, Suva LJ, Kelly T . (2004). Heparan sulfate proteoglycans and heparanase—partners in osteolytic tumor growth and metastasis. Matrix Biol 23: 341–352.

    CAS  Google Scholar 

  • Schmausser B, Andrulis M, Endrich S, Muller-Hermelink HK, Eck M . (2005). Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. Int J Med Microbiol 295: 179–185.

    CAS  Google Scholar 

  • Serafini P, Borrello I, Bronte V . (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16: 53–65.

    CAS  Google Scholar 

  • Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE et al. (2000). The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30: 2211–2215.

    CAS  Google Scholar 

  • Sioud M . (2006). Innate sensing of self and nonself RNAs by Toll-like receptors. Trends Mol Med 12: 167–176.

    CAS  Google Scholar 

  • Smiley ST, King JA, Hancock WW . (2001). Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J Immunol 167: 2887–2894.

    CAS  Google Scholar 

  • Song C, Chen LZ, Zhang RH, Yu XJ, Zeng YX . (2006). Functional variant in the 3′-untranslated region of Toll-like receptor 4 is associated with nasopharyngeal carcinoma risk. Cancer Biol Ther 5: 1285–1291.

    CAS  Google Scholar 

  • Sun J, Wiklund F, Zheng SL, Chang B, Balter K, Li L et al. (2005). Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J Natl Cancer Inst 97: 525–532.

    CAS  Google Scholar 

  • Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ et al. (2006). Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116: 485–494.

    CAS  Google Scholar 

  • Szczepanski M, Stelmachowska M, Stryczynski L, Golusinski W, Samara H, Mozer-Lisewska I et al. (2007). Assessment of expression of toll-like receptors 2, 3 and 4 in laryngeal carcinoma. Eur Arch Otorhinolaryngol 264: 525–530.

    Google Scholar 

  • Takeda K, Akira S . (2004). TLR signaling pathways. Semin Immunol 16: 3–9.

    CAS  Google Scholar 

  • Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T et al. (2002). Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4. J Exp Med 195: 99–111.

    CAS  Google Scholar 

  • Tsan MF, Gao B . (2004). Endogenous ligands of Toll-like receptors. J Leukoc Biol 76: 514–519.

    CAS  Google Scholar 

  • Tsan MF, Gao B . (2007). Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors. J Endotoxin Res 13: 6–14.

    CAS  Google Scholar 

  • Vicari AP, Caux C, Trinchieri G . (2002). Tumor escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12: 33–42.

    CAS  Google Scholar 

  • Wang HY, Wang RF . (2007). Regulatory T cells and cancer. Curr Opin Immunol 19: 217–223.

    CAS  Google Scholar 

  • Wang JH, Manning BJ, Wu QD, Blankson S, Bouchier-Hayes D, Redmond HP . (2003). Endotoxin/lipopolysaccharide activates NF-kappaB and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism. J Immunol 170: 795–804.

    CAS  Google Scholar 

  • Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, Lindner D et al. (2004). Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced anti-tumor activity. Cancer Res 64: 5850–5860.

    CAS  Google Scholar 

  • Whitmore MM, Li S, Falo Jr L, Huang L . (2001). Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired anti-tumor immune responses. Cancer Immunol Immunother 50: 503–514.

    CAS  Google Scholar 

  • Wingender G, Garbi N, Schumak B, Jungerkes F, Endl E, von Bubnoff D et al. (2006). Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur J Immunol 36: 12–20.

    CAS  Google Scholar 

  • Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR . (2004). Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Inves 114: 560–568.

    CAS  Google Scholar 

  • Xu Q . (2002). Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 22: 1547–1559.

    CAS  Google Scholar 

  • Yang Y, Huang CT, Huang X, Pardoll DM . (2004). Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 5: 508–515.

    CAS  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D . (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumor microenvironment. Nat Rev Immunol 7: 41–51.

    CAS  Google Scholar 

  • Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ . (2003). AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem 278: 23432–23440.

    CAS  Google Scholar 

  • Zheng SL, Augustsson-Balter K, Chang B, Hedelin M, Li L, Adami HO et al. (2004). Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the Cancer Prostate in Sweden Study. Cancer Res 64: 2918–2922.

    CAS  Google Scholar 

  • Zhou XX, Jia WH, Shen GP, Qin HD, Yu XJ, Chen LZ et al. (2006). Sequence variants in toll-like receptor 10 are associated with nasopharyngeal carcinoma risk. Cancer Epidemiol Biomarkers Prev 15: 862–866.

    CAS  Google Scholar 

Download references

Acknowledgements

Dr Huabao Xiong was supported by NIH P01 DK72201, a Crohn's and Colitis Foundation of America, a grant from the Eli and Edythe L Broad Foundation. Dr Zuo-Hua Feng was supported by National Development Program (973) For Key Basic Research (2002CB513100) of China. Dr Jay Unkeless was supported by a Crohn's and Colitis Foundation of America Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B Huang or H Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Zhao, J., Unkeless, J. et al. TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 27, 218–224 (2008). https://doi.org/10.1038/sj.onc.1210904

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210904

Keywords

This article is cited by

Search

Quick links