Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA double-strand breaks: their cellular and clinical impact?

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  • Ahnesorg P, Smith P, Jackson SP . (2006). XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124: 301–313.

    CAS  Article  Google Scholar 

  • Bassing CH, Alt FW . (2004). The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst) 3: 781–796.

    CAS  Article  Google Scholar 

  • Buck D, Moshous D, de Chasseval R, Ma Y, le Deist F, Cavazzana-Calvo M et al. (2006). Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. Eur J Immunol 36: 224–235.

    CAS  Article  Google Scholar 

  • Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S et al. (2007). Chromosome breakage after G2 checkpoint release. J Cell Biol 176: 748–755.

    Article  Google Scholar 

  • Karanjawala ZE, Grawunder U, Hsieh CL, Lieber MR . (1999). The nonhomologous DNA end-joining pathway is important for chromosome stability in primary fibroblasts. Curr Biol 9: 1501–1504.

    CAS  Article  Google Scholar 

  • Löbrich M, Rief N, Kuhne M, Heckmann M, Fleckenstein J, Rube C et al. (2005). In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci USA 102: 8984–8989.

    Article  Google Scholar 

  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F et al. (2001). Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177–186.

    CAS  Article  Google Scholar 

  • O'Driscoll M, Cerosaletti KM, Girard P-M, Dai Y, Stumm M, Kysela B et al. (2001). DNA ligase IV mutations identified in patients exhibiting development delay and immunodeficiency. Mol Cell 8: 1175–1185.

    CAS  Article  Google Scholar 

  • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM . (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10: 886–895.

    CAS  Article  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ et al. (2004). A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16: 715–724.

    CAS  Article  Google Scholar 

  • Taccioli GE, Rathbun G, Oltz E, Stamato T, Jeggo PA, Alt FW . (1993). Impairment of V(D)J recombination in double-strand break repair mutants. Science 260: 207–210.

    CAS  Article  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22: 5612–5621.

    CAS  Article  Google Scholar 

  • Wyman C, Kanaar R . (2006). DNA double-strand break repair: all's well that ends well. Annu Rev Genet 40: 363–383.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P A Jeggo or M Löbrich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeggo, P., Löbrich, M. DNA double-strand breaks: their cellular and clinical impact?. Oncogene 26, 7717–7719 (2007). https://doi.org/10.1038/sj.onc.1210868

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210868

Further reading

Search

Quick links