Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cellular senescence bypass screen identifies new putative tumor suppressor genes

Abstract

Senescence is a mechanism that limits cellular lifespan and constitutes a barrier against cellular immortalization. To identify new senescence regulatory genes that might play a role in tumorigenesis, we have designed and performed a large-scale antisense-based genetic screen in primary mouse embryo fibroblasts (MEFs). Out of this screen, we have identified five different genes through which loss of function partially bypasses senescence. These genes belong to very different biochemical families: csn2 (component of the Cop9 signalosome), aldose reductase (a metabolic enzyme) and brf1 (subunit of the RNA polymerase II complex), S-adenosyl homocysteine hydrolase and Bub1. Inactivation, at least partial, of these genes confers resistance to both p53- and p16INK4a-induced proliferation arrest. Furthermore, such inactivation inhibits p53 but not E2F1 transcriptional activity and impairs DNA-damage-induced transcription of p21. Since the aim of the screen was to identify new regulators of tumorigenesis, we have tested their inactivation in human tumors. We have found, either by northern blot or quantitative reverse transcriptase–PCR analysis, that the expression of three genes, Csn2, Aldose reductase and Brf1, is lost at different ratios in tumors of different origins. These genes are located at common positions of loss of heterogeneity (15q21.2, 7q35 and 14q32.33); therefore,we have measured genomic losses of these specific genes in different tumors. We have found that Csn2 and Brf1 also show genomic losses of one allele in different tumors. Our data suggest that the three genes identified in the genome-wide loss-of-function genetic screen are putative tumor suppressors located at 15q21.2; 7q35 and 14q32.33.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bech-Otschir D, Kraft R, Huang X, Henklein P, Kapelari B, Pollmann C et al. (2001). COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. Embo J 20: 1630–1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bech-Otschir D, Seeger M, Dubiel W . (2002). The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J Cell Sci 115: 467–473.

    CAS  PubMed  Google Scholar 

  • Berns K, Hijmans E M, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428: 431–437.

    Article  CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660–665.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J . (2001). Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11: S27–S31.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J . (2005). Suppressing cancer: the importance of being senescent. Science 309: 886–887.

    Article  CAS  PubMed  Google Scholar 

  • Carnero A, Beach DH . (2004). Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene 23: 6006–6011.

    Article  CAS  PubMed  Google Scholar 

  • Carnero A, Hudson JD, Hannon GJ, Beach DH . (2000). Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res 28: 2234–2241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichhorn K, Jackson SP . (2001). A role for TAF3B2 in the repression of human RNA polymerase III transcription in nonproliferating cells. J Biol Chem 276: 21158–21165.

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Blackburn EH . (2004). Tracking telomerase. Cell 116: S83–S86, 1 p following S86.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Larminie CG, Cairns CA, Mital R, Martin K, Kouzarides T, Jackson S P et al. (1997). Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. Embo J 16: 2061–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefrancois-Martinez AM, Bertherat J, Val P, Tournaire C, Gallo-Payet N et al. (2004). Decreased expression of cyclic adenosine monophosphate-regulated aldose reductase (AKR1B1) is associated with malignancy in human sporadic adrenocortical tumors. J Clin Endocrinol Metab 89: 3010–3019.

    Article  CAS  PubMed  Google Scholar 

  • Lleonart ME, Vidal F, Gallardo D, Diaz-Fuertes M, Rojo F, Cuatrecasas M et al. (2006). New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep 16: 603–608.

    CAS  PubMed  Google Scholar 

  • Lykke-Andersen K, Schaefer L, Menon S, Deng XW, Miller J B, Wei N . (2003). Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death. Mol Cell Biol 23: 6790–6797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    Article  CAS  PubMed  Google Scholar 

  • Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS et al. (1999). Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 21: 115–118.

    Article  CAS  PubMed  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B et al. (2000). Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14: 3037–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109: 335–346.

    Article  CAS  PubMed  Google Scholar 

  • Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G . (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30: e57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano M, Blasco MA . (2001). Putting the stress on senescence. Curr Opin Cell Biol 13: 748–753.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin W, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Roninson IB . (2004). Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23: 2919–2933.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, McCormick F . (2002). The RB and p53 pathways in cancer. Cancer Cell 2: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Mori I, Nakayama Y, Miyakoda M, Kodama S, Watanabe M . (2001). Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat Res 155: 248–253.

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Tsuge T, Serino G, Dohmae N, Takio K, Matsui M et al. (1998). The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr Biol 8: 919–922.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki L, Bronson R, Williams BO, Dyson N J, Harlow E, Jacks T . (1998). Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/-)mice. Nat Genet 18: 360–364.

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Menon S, Lykke-Andersen K, Tsuge T, Di X, Wang X et al. (2002). The COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Curr Biol 12: 667–672.

    Article  CAS  PubMed  Google Scholar 

  • Yoneda-Kato N, Tomoda K, Umehara M, Arata Y, Kato JY . (2005). Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3. Embo J 24: 1739–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the CNIO Tumor Bank for providing the tumor samples. This work has been partly supported by grants from Spanish Ministry of Health (FIS-02/0126), Fundación Mutua Madrileña and the Spanish Ministry of Education and Science (SAF2005-00944) to AC and MRC and Wellcome Trust (to DHB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Carnero.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leal, J., Fominaya, J., Cascón, A. et al. Cellular senescence bypass screen identifies new putative tumor suppressor genes. Oncogene 27, 1961–1970 (2008). https://doi.org/10.1038/sj.onc.1210846

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210846

Keywords

This article is cited by

Search

Quick links