Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphorylation of nm23-H1 by CKI induces its complex formation with h-prune and promotes cell motility

Abstract

The combination of an increase in the cAMP-phosphodiesterase activity of h-prune and its interaction with nm23-H1 have been shown to be key steps in the induction of cellular motility in breast cancer cells. Here we present the molecular mechanisms of this interaction. The region of the nm23–h-prune interaction lies between S120 and S125 of nm23, where missense mutants show impaired binding; this region has been highly conserved throughout evolution, and can undergo serine phosphorylation by casein kinase I. Thus, the casein kinase I δ-ɛ specific inhibitor IC261 impairs the formation of the nm23–h-prune complex, which translates ‘in vitro’ into inhibition of cellular motility in a breast cancer cellular model. A competitive permeable peptide containing the region for phosphorylation by casein kinase I impairs cellular motility to the same extent as IC261. The identification of these two modes of inhibition of formation of the nm23-H1–h-prune protein complex pave the way toward new challenges, including translational studies using IC261 or this competitive peptide ‘in vivo’ to inhibit cellular motility induced by nm23-H1–h-prune complex formation during progression of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aravind L, Koonin EV . (1998). The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 23: 17–19.

    Article  CAS  PubMed  Google Scholar 

  • Biondi RM, Engel M, Sauane M, Welter C, Issinger OG, Jimenez de Asua L et al. (1996). Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture. FEBS Lett 399: 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Bominaar AA, Tepper AD, Veron M . (1994). Autophosphorylation of nucleoside diphosphate kinase on non-histidine residues. FEBS Lett 353: 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Cong F, Schweizer L, Varmus H . (2004). Casein kinase Iepsilon modulates the signaling specificities of dishevelled. Mol Cell Biol 24: 2000–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper CD, Lampe PD . (2002). Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem 277: 44962–44968.

    Article  CAS  PubMed  Google Scholar 

  • Crawford RM, Treharne KJ, Arnaud-Dabernat S, Daniel JY, Foretz M, Viollet B et al. (2006). Understanding the molecular basis of the interaction between NDPK-A and AMPK alpha 1. Mol Cell Biol 15: 5921–5931.

    Article  Google Scholar 

  • Crawford RM, Treharne KJ, Best OG, Muimo R, Riemen CE, Mehta A . (2005). A novel physical and functional association between nucleoside diphosphate kinase A and AMP-activated protein kinase alpha1 in liver and lung. Biochem J 392: 201–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo A, Garzia L, Andre A, Carotenuto P, Aglio V, Guardiola O et al. (2004). Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 5: 137–149.

    Article  PubMed  Google Scholar 

  • D’Angelo A, Zollo M . (2004). Unraveling genes and pathways influenced by H-prune PDE overexpression: a model to study cellular motility. Cell Cycle 3: 758–761.

    PubMed  Google Scholar 

  • Engel M, Issinger OG, Lascu I, Seib T, Dooley S, Zang KD et al. (1994). Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro. Biochem Biophys Res Commun 199: 1041–1048.

    Article  CAS  PubMed  Google Scholar 

  • Fiol CJ, Haseman JH, Wang YH, Roach PJ, Roeske RW, Kowalczuk M et al. (1988). Phosphoserine as a recognition determinant for glycogen synthase kinase-3: phosphorylation of a synthetic peptide based on the G-component of protein phosphatase-1. Arch Biochem Biophys 267: 797–802.

    Article  CAS  PubMed  Google Scholar 

  • Forus A, D’Angelo A, Henriksen J, Merla G, Maelandsmo GM, Florenes VA et al. (2001). Amplification and overexpression of PRUNE in human sarcomas and breast carcinomas—a possible mechanism for altering the nm23-H1 activity. Oncogene 20: 6881–6890.

    Article  CAS  PubMed  Google Scholar 

  • Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM . (2002). Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc Natl Acad Sci USA 99: 1182–1187.

    Article  CAS  PubMed  Google Scholar 

  • Garzia L, Andre A, Amoresano A, D’Angelo A, Martusciello R, Cirulli C et al. (2003). Method to express and purify nm23-H2 protein from baculovirus-infected cells. Biotechniques 35: 384–388, 390–391.

    Article  CAS  PubMed  Google Scholar 

  • Garzia L, Roma C, Tata N, Pagnozzi D, Pucci P, Zollo M . (2006). H-prune-nm23-H1 protein complex and correlation to pathways in cancer metastasis. J Bioenerg Biomembr 38: 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Heo YJ, Kim SY, Kim E, Lee KJ . (1997). Quaternary structural analysis of nucleoside diphosphate kinases using capillary electrophoresis. J Chromatogr A 781: 251–261.

    Article  CAS  PubMed  Google Scholar 

  • Hino S, Michiue T, Asashima M, Kikuchi A . (2003). Casein kinase I epsilon enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of beta-catenin. J Biol Chem 278: 14066–14073.

    Article  CAS  PubMed  Google Scholar 

  • Izeradjene K, Douglas L, Delaney AB, Houghton JA . (2004). Casein kinase I attenuates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by regulating the recruitment of fas-associated death domain and procaspase-8 to the death-inducing signaling complex. Cancer Res 64: 8036–8044.

    Article  CAS  PubMed  Google Scholar 

  • Kantor JD, McCormick B, Steeg PS, Zetter BR . (1993). Inhibition of cell motility after nm23 transfection of human and murine tumor cells. Cancer Res 53: 1971–1973.

    CAS  PubMed  Google Scholar 

  • Kim MS, Cheong YP, So HS, Lee KM, Son Y, Lee CS et al. (2002). Regulation of cyclic AMP-dependent response element-binding protein (CREB) by the nociceptin/orphanin FQ in human dopaminergic SH-SY5Y cells. Biochem Biophys Res Commun 291: 663–668.

    Article  CAS  PubMed  Google Scholar 

  • Kim YI, Park S, Jeoung DI, Lee H . (2003). Point mutations affecting the oligomeric structure of Nm23-H1 abrogates its inhibitory activity on colonization and invasion of prostate cancer cells. Biochem Biophys Res Commun 307: 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Knauer SK, Stauber RH . (2005). Development of an autofluorescent translocation biosensor system to investigate protein-protein interactions in living cells. Anal Chem 77: 4815–4820.

    Article  CAS  PubMed  Google Scholar 

  • Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M . (2005). The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17: 675–689.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Hino S, Oue N, Asahara T, Zollo M, Yasui W et al. (2006). Glycogen synthase kinase 3 and h-prune regulate cell migration by modulating focal adhesions. Mol Cell Biol 26: 898–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuret J, Woodgett JR, Cohen P . (1985). Multisite phosphorylation of glycogen synthase from rabbit skeletal muscle. Identification of the sites phosphorylated by casein kinase-I. Eur J Biochem 151: 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Lacombe ML, Milon L, Munier A, Mehus JG, Lambeth DO . (2000). The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 32: 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Lascu L . (2000). Quaternary structure of nucleoside diphosphate kinases. J Bioenerg Biomembr 32: 213–214.

    CAS  PubMed  Google Scholar 

  • Lee M, Hwang JT, Lee HJ, Jung SN, Kang I, Chi SG et al. (2003). AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J Biol Chem 278: 39653–39661.

    Article  CAS  PubMed  Google Scholar 

  • Li G, Yin H, Kuret J . (2004). Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules. J Biol Chem 279: 15938–15945.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald NJ, Freije JM, Stracke ML, Manrow RE, Steeg PS . (1996). Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transfection into human breast carcinoma cells. J Biol Chem 271: 25107–25116.

    Article  CAS  PubMed  Google Scholar 

  • Marin O, Bustos VH, Cesaro L, Meggio F, Pagano MA, Antonelli M et al. (2003). A noncanonical sequence phosphorylated by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proc Natl Acad Sci USA 100: 10193–10200.

    Article  CAS  PubMed  Google Scholar 

  • Marin O, Meggio F, Sarno S, Andretta M, Pinna LA . (1994). Phosphorylation of synthetic fragments of inhibitor-2 of protein phosphatase-1 by casein kinase-1 and -2. Evidence that phosphorylated residues are not strictly required for efficient targeting by casein kinase-1. Eur J Biochem 223: 647–653.

    Article  CAS  PubMed  Google Scholar 

  • Mashhoon N, DeMaggio AJ, Tereshko V, Bergmeier SC, Egli M, Hoekstra MF et al. (2000). Crystal structure of a conformation-selective casein kinase-1 inhibitor. J Biol Chem 275: 20052–20060.

    Article  CAS  PubMed  Google Scholar 

  • Meggio F, Boldyreff B, Issinger OG, Pinna LA . (1993). The autophosphorylation and p34cdc2 phosphorylation sites of casein kinase-2 beta-subunit are not essential for reconstituting the fully-active heterotetrameric holoenzyme. Biochim Biophys Acta 1164: 223–225.

    Article  CAS  PubMed  Google Scholar 

  • Middelhaufe S, Garzia L, Ohndorf UM, Kachholz B, Zollo M, Steegborn C . (2007). Domain mapping on the human metastasis regulator protein h-prune reveals a C-terminal dimerization domain. Biochem J 407: 199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mocan I, Georgescauld F, Gonin P, Thoraval D, Cervoni L, Giartosio A et al. (2007). Protein phosphorylation corrects the folding defect of the neuroblastoma (S120G) mutant of human nucleoside diphosphate kinase A/Nm23-H1. Biochem J 403: 149–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuki Y, Tanaka M, Yoshii S, Kawazoe N, Nakaya K, Sugimura H . (2001). Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA 98: 4385–4390.

    Article  CAS  PubMed  Google Scholar 

  • Pagano MA, Meggio F, Ruzzene M, Andrzejewska M, Kazimierczuk Z, Pinna LA . (2004). 2-Dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole: a novel powerful and selective inhibitor of protein kinase CK2. Biochem Biophys Res Commun 321: 1040–1044.

    Article  CAS  PubMed  Google Scholar 

  • Palacios F, Schweitzer JK, Boshans RL, D’Souza-Schorey C . (2002). ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol 4: 929–936.

    Article  CAS  PubMed  Google Scholar 

  • Rena G, Bain J, Elliott M, Cohen P . (2004). D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep 5: 60–65.

    Article  CAS  PubMed  Google Scholar 

  • Reymond A, Volorio S, Merla G, Al-Maghtheh M, Zuffardi O, Bulfone A et al. (1999). Evidence for interaction between human PRUNE and nm23-H1 NDPKinase. Oncogene 18: 7244–7252.

    Article  CAS  PubMed  Google Scholar 

  • Steeg PS . (2005). New insights into the tumor metastatic process revealed by gene expression profiling. Am J Pathol 166: 1291–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME . (1988). Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48: 6550–6554.

    CAS  PubMed  Google Scholar 

  • Tseng YH, Vicent D, Zhu J, Niu Y, Adeyinka A, Moyers JS et al. (2001). Regulation of growth and tumorigenicity of breast cancer cells by the low molecular weight GTPase Rad and nm23. Cancer Res 61: 2071–2079.

    CAS  PubMed  Google Scholar 

  • Wagner PD, Steeg PS, Vu ND . (1997). Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci USA 94: 9000–9005.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhang Y, Shacter E . (2004). Rac1 inhibits apoptosis in human lymphoma cells by stimulating Bad phosphorylation on Ser-75. Mol Cell Biol 24: 6205–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zollo M, Andre A, Cossu A, Sini MC, D’Angelo A, Marino N et al. (2005). Overexpression of h-prune in breast cancer is correlated with advanced disease status. Clin Cancer Res 11: 199–205.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

For fruitful discussions and critical reading of the manuscript, the authors would like to thank Professor Gennaro Marino, University of Biotechnology, Federico II, Naples (Italy). Additionally, we thank Dr Nadia De Marco (University of Science, Federico II, Naples, Italy) for supplying material for Xenopus cloning, Professor Massimo Lancieri (University of Science, Federico II, Naples, Italy) for Zebra fish material and cloning, and Dr Bazzicalupo (IGB-CNR, Naples, Italy) for the C. elegans nm23 material and cloning. We thank Dr Patricia Steeg (National Cancer Institute, Bethesda, MD, USA) for kindly providing us with the MDA-MB-MB345 c100 and H1 177 cell lines and Professor Lorenzo Pinna (University of Science, Padova, Italy) for providing us with DMAT, a specific CKII inhibitor. This work was supported by a 2005–2007 ‘AIRC-FIRC progetto regionale’ grant (MZ), a FIRC fellowship (LG), the Open University (UK) TIGEM PhD Programme (LG), a FIRB-MIUR-RBAU01RW82 grant (MZ), EU BRECOSM-LSH-CT-503234 (RS, MZ) and EUFP6 EET-Pipeline (MZ) grants and an ‘Associazione Italiana lotta al Neuroblastoma’ grant (AI, MZ) 2006-2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Zollo.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garzia, L., D'Angelo, A., Amoresano, A. et al. Phosphorylation of nm23-H1 by CKI induces its complex formation with h-prune and promotes cell motility. Oncogene 27, 1853–1864 (2008). https://doi.org/10.1038/sj.onc.1210822

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210822

Keywords

This article is cited by

Search

Quick links