Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CD43 promotes cell growth and helps to evade FAS-mediated apoptosis in non-hematopoietic cancer cells lacking the tumor suppressors p53 or ARF

Abstract

CD43 is a highly glycosylated transmembrane protein expressed on the surface of most hematopoietic cells. Expression of CD43 has also been demonstrated in many human tumor tissues, including colon adenomas and carcinomas, but not in normal colon epithelium. The potential contribution of CD43 to tumor development is still not understood. Here, we show that overexpression of CD43 increases cell growth and colony formation in mouse and human cells lacking expression of either p53 or ARF (alternative reading frame) tumor-suppressor proteins. In addition, CD43 overexpression also lowers the detection of the FAS death receptor on the cell surface of human cancer cells, and thereby helps to evade FAS-mediated apoptosis. However, when both p53 and ARF proteins are present, CD43 overexpression activates p53 and suppresses colony formation due to induction of apoptosis. These observations suggest CD43 as a potential contributor to tumor development and the functional ARF–p53 pathway is required for the elimination of cells with aberrant CD43 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abarzua P, LoSardo J, Gubler M, Neri A . (1995). Microinjection of monoclonal antibody PAb421 into human SW480 colorectal carcinoma cells restores the transcription activation function to mutant p53. Cancer Res 55: 3490–3494.

    CAS  Google Scholar 

  • Andersson C, Fernandez-Rodriguez J, Laos S, Sikut R, Sikut A, Baeckstrom D et al. (2004). CD43 has a functional NLS, interacts with beta-catenin, and affects gene expression. Biochem Biophys Res Commun 316: 12–17.

    Article  CAS  Google Scholar 

  • Ardman B, Sikorski MA, Staunton DE . (1992). CD43 interferes with T-lymphocyte adhesion. Proc Natl Acad Sci USA 89: 5001–5005.

    Article  CAS  Google Scholar 

  • Baeckstrom D, Zhang K, Asker N, Ruetschi U, Ek M, Hansson GC . (1995). Expression of the leukocyte-associated sialoglycoprotein CD43 by a colon carcinoma cell line. J Biol Chem 270: 13688–13692.

    Article  CAS  Google Scholar 

  • Bazil V, Brandt J, Chen S, Roeding M, Luens K, Tsukamoto A et al. (1996). A monoclonal antibody recognizing CD43 (leukosialin) initiates apoptosis of human hematopoietic progenitor cells but not stem cells. Blood 87: 1272–1281.

    CAS  Google Scholar 

  • Bazil V, Brandt JE, Hoffman R . (1997). Resistance of human hematopoietic stem cells to a monoclonal antibody recognizing CD43. Stem Cells 15: 13–18; discussion 18–19.

    Article  CAS  Google Scholar 

  • Brown TJ, Shuford WW, Wang WC, Nadler SG, Bailey TS, Marquardt H et al. (1996). Characterization of a CD43/leukosialin-mediated pathway for inducing apoptosis in human T-lymphoblastoid cells. J Biol Chem 271: 27686–27695.

    Article  CAS  Google Scholar 

  • Carlsson SR, Fukuda M . (1986). Isolation and characterization of leukosialin, a major sialoglycoprotein on human leukocytes. J Biol Chem 261: 12779–12786.

    CAS  Google Scholar 

  • Cermak L, Simova S, Pintzas A, Horejsi V, Andera L . (2002). Molecular mechanisms involved in CD43-mediated apoptosis of TF-1 cells. Roles of transcription Daxx expression, and adhesion molecules. J Biol Chem 277: 7955–7961.

    Article  CAS  Google Scholar 

  • Deng J, Miller S, Wang H, Xia W, Wen Y, Zhou B et al. (2002). beta-Catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2: 323–334.

    Article  CAS  Google Scholar 

  • Dragone LL, Barth RK, Sitar KL, Disbrow GL, Frelinger JG . (1995). Disregulation of leukosialin (CD43, Ly48, sialophorin) expression in the B-cell lineage of transgenic mice increases splenic B-cell number and survival. Proc Natl Acad Sci USA 92: 626–630.

    Article  CAS  Google Scholar 

  • Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB et al. (2000). Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res 60: 129–133.

    CAS  Google Scholar 

  • Evan GI, Vousden KH . (2001). Proliferation, cell cycle and apoptosis in cancer. Nature 411: 342–348.

    Article  CAS  Google Scholar 

  • Fearon E, Vogelstein B . (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    Article  CAS  Google Scholar 

  • Fernandez-Rodriguez J, Andersson CX, Laos S, Baeckstrom D, Sikut A, Sikut R et al. (2002). The leukocyte antigen CD43 is expressed in different cell lines of nonhematopoietic origin. Tumour Biol 23: 193–201.

    Article  CAS  Google Scholar 

  • He YW, Bevan MJ . (1999). High level expression of CD43 inhibits T cell receptor/CD3-mediated apoptosis. J Exp Med 190: 1903–1908.

    Article  CAS  Google Scholar 

  • Hewitt RE, McMarlin A, Kleiner D, Wersto R, Martin P, Tsokos M et al. (2000). Validation of a model of colon cancer progression. J Pathol 192: 446–454.

    Article  CAS  Google Scholar 

  • Ivanov VN, Lopez Bergami P, Maulit G, Sato TA, Sassoon D, Ronai Z . (2003). FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol 23: 3623–3635.

    Article  CAS  Google Scholar 

  • Kadaja L, Laos S, Maimets T . (2004). Overexpression of leukocyte marker CD43 causes activation of the tumor suppressor proteins p53 and ARF. Oncogene 23: 2523–2530.

    Article  CAS  Google Scholar 

  • Kyoizumi S, Ohara T, Kusunoki Y, Hayashi T, Koyama K, Tsuyama N . (2004). Expression characteristics and stimulatory functions of CD43 in human CD4+ memory T cells: analysis using a monoclonal antibody to CD43 that has a novel lineage specificity. J Immunol 172: 7246–7253.

    Article  CAS  Google Scholar 

  • Laos S, Baeckstrom D, Hansson GC . (2006). Inhibition of NF-kappaB activation and chemokine expression by the leukocyte glycoprotein, CD43, in colon cancer cells. Int J Oncol 28: 695–704.

    CAS  Google Scholar 

  • Layseca-Espinosa E, Pedraza-Alva G, Montiel JL, del Rio R, Fierro NA, Gonzalez-Amaro R et al. (2003). T cell aggregation induced through CD43: intracellular signals and inhibition by the immunomodulatory drug leflunomide. J Leukoc Biol 74: 1083–1093.

    Article  CAS  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  Google Scholar 

  • Lowe SW, Sherr CJ . (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13: 77–83.

    Article  CAS  Google Scholar 

  • Mazars R, Pujol P, Maudelonde T, Jeanteur P, Theillet C . (1991). p53 mutations in ovarian cancer: a late event? Oncogene 6: 1685–1690.

    CAS  Google Scholar 

  • Mattioli I, Dittrich-Breiholz O, Livingstone M, Kracht M, Schmitz ML . (2004). Comparative analysis of T-cell costimulation and CD43 activation reveals novel signaling pathways and target genes. Blood 104: 3302–3304.

    Article  CAS  Google Scholar 

  • Misawa Y, Nagaoka H, Kimoto H, Ishii Y, Kitamura K, Tsunetsugu-Yokota Y et al. (1996). CD43 expression in a B cell lymphoma, WEHI 231, reduces susceptibility to G1 arrest and extends survival in culture upon serum depletion. Eur J Immunol 26: 2573–2581.

    Article  CAS  Google Scholar 

  • Miura Y, Mizutani C, Nishihara T, Hishita T, Yanagi S, Tohyama Y et al. (2001). Adhesion via CD43 induces Syk activation and cell proliferation in TF-1 cells. Biochem Biophys Res Commun 288: 80–86.

    Article  CAS  Google Scholar 

  • Moller P, Koretz K, Leithauser F, Bruderlein S, Henne C, Quentmeier A et al. (1994). Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer 57: 371–377.

    Article  CAS  Google Scholar 

  • Nagata S, Golstein P . (1995). The Fas death factor. Science 267: 1449–1456.

    Article  CAS  Google Scholar 

  • O’Connell J, Bennett MW, Nally K, Houston A, O’Sullivan GC, Shanahan F . (2000). Altered mechanisms of apoptosis in colon cancer: Fas resistance and counterattack in the tumor-immune conflict. Ann NY Acad Sci 910: 178–192; discussion 193–195.

    Article  Google Scholar 

  • Onami TM, Harrington LE, Williams MA, Galvan M, Larsen CP, Pearson TC et al. (2002). Dynamic regulation of T cell immunity by CD43. J Immunol 168: 6022–6031.

    Article  CAS  Google Scholar 

  • Ostberg JR, Barth RK, Frelinger JG . (1998). The Roman god Janus: a paradigm for the function of CD43. Immunol Today 19: 546–550.

    Article  CAS  Google Scholar 

  • Ouaaz F, Li M, Beg AA . (1999). A critical role for the RelA subunit of nuclear factor kappaB in regulation of multiple immune-response genes and in Fas-induced cell death. J Exp Med 189: 999–1004.

    Article  CAS  Google Scholar 

  • Pallant A, Eskenazi A, Mattei MG, Fournier RE, Carlsson SR, Fukuda M et al. (1989). Characterization of cDNAs encoding human leukosialin and localization of the leukosialin gene to chromosome 16. Proc Natl Acad Sci USA 86: 1328–1332.

    Article  CAS  Google Scholar 

  • Pimenidou A, Madden L, Topping K, Smith K, Monson J, Greenman J . (2004). Novel CD43 specific phage antibodies react with early stage colorectal tumours. Oncol Rep 11: 327–331.

    CAS  Google Scholar 

  • Remold-O’Donnell E, Kenney DM, Parkman R, Cairns L, Savage B, Rosen FS . (1984). Characterization of a human lymphocyte surface sialoglycoprotein that is defective in Wiskott–Aldrich syndrome. J Exp Med 159: 1705–1723.

    Article  Google Scholar 

  • Rodrigues N, Rowan A, Smith M, Kerr I, Bodmer W, Gannon J et al. (1990). p53 mutations in colorectal cancer. Proc Natl Acad Sci USA 87: 7555–7559.

    Article  CAS  Google Scholar 

  • Santamaria M, Lopez-Beltran A, Toro M, Pena J, Molina IJ . (1996). Specific monoclonal antibodies against leukocyte-restricted cell surface molecule CD43 react with nonhematopoietic tumor cells. Cancer Res 56: 3526–3529.

    CAS  Google Scholar 

  • Santana MA, Pedraza-Alva G, Olivares-Zavaleta N, Madrid-Marina V, Horejsi V, Burakoff SJ et al. (2000). CD43-mediated signals induce DNA binding activity of AP-1, NF-AT, and NFkappa B transcription factors in human T lymphocytes. J Biol Chem 275: 31460–31468.

    Article  CAS  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675–1687.

    Article  CAS  Google Scholar 

  • Shelley CS, Remold-O’Donnell E, Davis III AE, Bruns GA, Rosen FS, Carroll MC et al. (1989). Molecular characterization of sialophorin (CD43), the lymphocyte surface sialoglycoprotein defective in Wiskott–Aldrich syndrome. Proc Natl Acad Sci USA 86: 2819–2823.

    Article  CAS  Google Scholar 

  • Sherr CJ, Weber JD . (2000). The ARF/p53 pathway. Curr Opin Genet Dev 10: 94–99.

    Article  CAS  Google Scholar 

  • Sikut R, Andersson CX, Sikut A, Fernandez-Rodriguez J, Karlsson NG, Hansson GC . (1999). Detection of CD43 (leukosialin) in colon adenoma and adenocarcinoma by novel monoclonal antibodies against its intracellular domain. Int J Cancer 82: 52–58.

    Article  CAS  Google Scholar 

  • Sikut R, Nilsson O, Baeckstrom D, Hansson GC . (1997). Colon adenoma and cancer cells aberrantly express the leukocyte-associated sialoglycoprotein CD43. Biochem Biophys Res Commun 238: 612–616.

    Article  CAS  Google Scholar 

  • von Reyher U, Strater J, Kittstein W, Gschwendt M, Krammer PH, Moller P . (1998). Colon carcinoma cells use different mechanisms to escape CD95-mediated apoptosis. Cancer Res 58: 526–534.

    CAS  Google Scholar 

  • Woodman RC, Johnston B, Hickey MJ, Teoh D, Reinhardt P, Poon BY et al. (1998). The functional paradox of CD43 in leukocyte recruitment: a study using CD43-deficient mice. J Exp Med 188: 2181–2186.

    Article  CAS  Google Scholar 

  • Zhang K, Sikut R, Hansson GC . (1997). A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells. Cell Immunol 176: 158–165.

    Article  CAS  Google Scholar 

  • Zheng Y, Ouaaz F, Bruzzo P, Singh V, Gerondakis S, Beg AA . (2001). NF-kappa B RelA (p65) is essential for TNF-alpha-induced Fas expression but dispensable for both TCR-induced expression and activation-induced cell death. J Immunol 166: 4949–4957.

    Article  CAS  Google Scholar 

  • Ziprin P, Alkhamesi NA, Ridgway PF, Peck DH, Darzi AW . (2004). Tumour-expressed CD43 (sialophorin) mediates tumourmesothelial cell adhesion. Biol Chem 385: 755–761.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr K Wiman for the p14ARF cDNA and for ARF-null MEFs and Dr Ch Sherr for p19ARF cDNA. This project has been supported by grants from Estonian Science Foundation (ETF6459), by Grant QLRT-2001-2821 from the European Commission, the Swedish Cancer Foundation, the Swedish Institute, and Ingabritt and Arne Lundberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Kadaja-Saarepuu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadaja-Saarepuu, L., Laos, S., Jääger, K. et al. CD43 promotes cell growth and helps to evade FAS-mediated apoptosis in non-hematopoietic cancer cells lacking the tumor suppressors p53 or ARF. Oncogene 27, 1705–1715 (2008). https://doi.org/10.1038/sj.onc.1210802

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210802

Keywords

This article is cited by

Search

Quick links