Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The transcriptional repressor NIPP1 is an essential player in EZH2-mediated gene silencing

Abstract

EZH2 is a Polycomb group (PcG) protein that promotes the late-stage development of cancer by silencing a specific set of genes, at least in part through trimethylation of associated histone H3 on Lys 27 (H3K27). Nuclear inhibitor of protein phosphatase-1 (NIPP1) is a ubiquitously expressed transcriptional repressor that has binding sites for the EZH2 interactor EED. Here, we examine the contribution of NIPP1 to EZH2-mediated gene silencing. Studies on NIPP1-deficient cells disclose a widespread and essential role of NIPP1 in the trimethylation of H3K27 by EZH2, not only in the onset of this trimethylation during embryonic development, but also in the maintenance of this repressive mark in proliferating cells. Consistent with this notion, EZH2 and NIPP1 silence a common set of genes, as revealed by gene-expression profiling, and NIPP1 is associated with established Polycomb target genes and with genomic regions that are enriched in Polycomb targets. Furthermore, most NIPP1 target genes are trimethylated on H3K27 and the knockdown of either NIPP1 or EZH2 is often associated with a loss of this modification. Our data reveal that NIPP1 is required for the global trimethylation of H3K27 and is implicated in gene silencing by EZH2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M . (2007). The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26: 4590–4595.

    Article  CAS  Google Scholar 

  • Beullens M, Bollen M . (2002). The protein phosphatase-1 regulator NIPP1 is also a splicing factor involved in a late step of spliceosome assembly. J Biol Chem 277: 19855–19860.

    Article  CAS  Google Scholar 

  • Boudrez A, Beullens M, Groenen P, Van Eynde A, Vulsteke V, Jagiello I et al. (2000). NIPP1-mediated interaction of protein phosphatase-1 with CDC5L, a regulator of pre-mRNA splicing and mitotic entry. J Biol Chem 275: 25411–25417.

    Article  CAS  Google Scholar 

  • Boudrez A, Beullens M, Waelkens E, Stalmans W, Bollen M . (2002). Phosphorylation-dependent interaction between the splicing factors SAP155 and NIPP1. J Biol Chem 277: 31834–31841.

    Article  CAS  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349–353.

    Article  CAS  Google Scholar 

  • Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K . (2006). Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123–1136.

    Article  CAS  Google Scholar 

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K . (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22: 5323–5335.

    Article  CAS  Google Scholar 

  • Cao R, Zhang Y . (2004a). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14: 155–164.

    Article  CAS  Google Scholar 

  • Cao R, Zhang Y . (2004b). SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15: 57–67.

    Article  CAS  Google Scholar 

  • Cao R, Tsukada Y, Zhang Y . (2005). Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20: 845–854.

    Article  CAS  Google Scholar 

  • Ceulemans H, Bollen M . (2004). Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84: 1–39.

    Article  CAS  Google Scholar 

  • Ceulemans H, Stalmans W, Bollen M . (2002). Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. Bioessays 24: 371–381.

    Article  CAS  Google Scholar 

  • Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT et al. (2005). Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310: 306–310.

    Article  CAS  Google Scholar 

  • Dellino GI, Schwartz YB, Farkas G, McCabe D, Elgin SC, Pirrotta V . (2004). Polycomb silencing blocks transcription initiation. Mol Cell 13: 887–893.

    Article  CAS  Google Scholar 

  • Faust C, Schumacher A, Holdener B, Magnuson T . (1995). The eed mutation disrupts anterior mesoderm production in mice. Development 121: 273–285.

    CAS  Google Scholar 

  • Gray D, Jubb AM, Hogue D, Dowd P, Kljavin N, Yi S et al. (2005). Maternal embryonic leucine zipper kinase/murine protein serine-threonine kinase 38 is a promising therapeutic target for multiple cancers. Cancer Res 65: 9751–9761.

    Article  CAS  Google Scholar 

  • Isono K, Mizutani-Koseki Y, Komori T, Schmidt-Zachmann MS, Koseki H . (2005). Mammalian polycomb-mediated repression of Hox genes requires the essential spliceosomal protein Sf3b1. Genes Dev 19: 536–541.

    Article  CAS  Google Scholar 

  • Jagiello I, Beullens M, Vulsteke V, Wera S, Sohlberg B, Stalmans W et al. (1997). NIPP-1, a nuclear inhibitory subunit of protein phosphatase-1, has RNA-binding properties. J Biol Chem 272: 22067–22071.

    Article  CAS  Google Scholar 

  • Jagiello I, Van Eynde A, Vulsteke V, Beullens M, Boudrez A, Keppens S et al. (2000). Nuclear and subnuclear targeting sequences of the protein phosphatase-1 regulator NIPP1. J Cell Sci 113 (Part 21): 3761–3768.

    CAS  Google Scholar 

  • Jin Q, Beullens M, Jagiello I, Van Eynde A, Vulsteke V, Stalmans W et al. (1999). Mapping of the RNA-binding and endoribonuclease domains of NIPP1, a nuclear targeting subunit of protein phosphatase 1. Biochem J 342 (Part 1): 13–19.

    Article  CAS  Google Scholar 

  • Jin Q, Van Eynde A, Beullens M, Roy N, Thiel G, Stalmans W et al. (2003). The protein phosphatase-1 (PP1) regulator, nuclear inhibitor of PP1 (NIPP1), interacts with the polycomb group protein, embryonic ectoderm development (EED), and functions as a transcriptional repressor. J Biol Chem 278: 30677–30685.

    Article  CAS  Google Scholar 

  • Kirmizis A, Bartley SM, Farnham PJ . (2003). Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2: 113–121.

    CAS  Google Scholar 

  • Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R et al. (2004). Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18: 1592–1605.

    Article  CAS  Google Scholar 

  • Kirmizis A, Farnham PJ . (2004). Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med (Maywood) 229: 705–721.

    Article  CAS  Google Scholar 

  • Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100: 11606–11611.

    Article  CAS  Google Scholar 

  • Kuzmichev A, Margueron R, Vaquero A, Preissner TS, Scher M, Kirmizis A et al. (2005). Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 102: 1859–1864.

    Article  CAS  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301–313.

    Article  CAS  Google Scholar 

  • Lin ML, Park JH, Nishidate T, Nakamura Y, Katagiri T . (2007). Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family. Breast Cancer Res 9: R17.

    Article  Google Scholar 

  • O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T . (2001). The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21: 4330–4336.

    Article  Google Scholar 

  • Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K . (2007). The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27: 3769–3779.

    Article  CAS  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H et al. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131–135.

    Article  CAS  Google Scholar 

  • Ringrose L . (2007). Polycomb comes of age: genome-wide profiling of target sites. Curr Opin Cell Biol 19: 290–297.

    Article  CAS  Google Scholar 

  • Ringrose L, Paro R . (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38: 413–443.

    Article  CAS  Google Scholar 

  • Roy N, Van Eynde A, Beke L, Nuytten M, Bollen M . (2007). The transcriptional repression by NIPP1 is mediated by Polycomb group proteins. Biochim Biophys Acta, doi:10.1016/j.bbaexp.2007.07.004.

    Article  CAS  Google Scholar 

  • Schwartz YB, Pirrotta V . (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8: 9–22.

    Article  CAS  Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W et al. (1999). Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98: 37–46.

    Article  CAS  Google Scholar 

  • Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H et al. (2007). Integration of estrogen and wnt signaling circuits by the polycomb group protein ezh2 in breast cancer cells. Mol Cell Biol 27: 5105–5119.

    Article  CAS  Google Scholar 

  • Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z et al. (2003). Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4: 481–495.

    Article  CAS  Google Scholar 

  • Sparmann A, van Lohuizen M . (2006). Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846–856.

    Article  CAS  Google Scholar 

  • Squazzo SL, O’Geen H, Komashko VM, Krig SR, Jin VX, Jang SW et al. (2006). Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 16: 890–900.

    Article  CAS  Google Scholar 

  • Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM et al. (2006). Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66: 2815–2825.

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  Google Scholar 

  • Van Eynde A, Nuytten M, Dewerchin M, Schoonjans L, Keppens S, Beullens M et al. (2004). The nuclear scaffold protein NIPP1 is essential for early embryonic development and cell proliferation. Mol Cell Biol 24: 5863–5874.

    Article  CAS  Google Scholar 

  • van Kemenade FJ, Raaphorst FM, Blokzijl T, Fieret E, Hamer KM, Satijn DP et al. (2001). Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood 97: 3896–3901.

    Article  CAS  Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419: 624–629.

    Article  CAS  Google Scholar 

  • Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439: 871–874.

    Article  Google Scholar 

  • Vulsteke V, Beullens M, Boudrez A, Keppens S, Van Eynde A, Rider MH et al. (2004). Inhibition of spliceosome assembly by the cell cycle-regulated protein kinase MELK and involvement of splicing factor NIPP1. J Biol Chem 279: 8642–8647.

    Article  CAS  Google Scholar 

  • Zeidler M, Varambally S, Cao Q, Chinnaiyan AM, Ferguson DO, Merajver SD et al. (2005). The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. Neoplasia 7: 1011–1019.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Fabienne Withof provided expert technical assistance. This work was financially supported by the Fund for Scientific Research-Flanders (Grant G.0290.05 and ZKB6003-01-W01), a Flemish Concerted Research Action and the Prime Minister's office (IAP/V-05). The microscopy was performed in the Cell Imaging Core Facility of KULeuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Van Eynde.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuytten, M., Beke, L., Van Eynde, A. et al. The transcriptional repressor NIPP1 is an essential player in EZH2-mediated gene silencing. Oncogene 27, 1449–1460 (2008). https://doi.org/10.1038/sj.onc.1210774

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210774

Keywords

This article is cited by

Search

Quick links