Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Deregulated Wnt/β-catenin program in high-risk neuroblastomas without MYCN amplification

Abstract

Neuroblastoma (NB) is a frequently lethal tumor of childhood. MYCN amplification accounts for the aggressive phenotype in a subset while the majority have no consistently identified molecular aberration but frequently express MYC at high levels. We hypothesized that activated Wnt/β-catenin (CTNNB1) signaling might account for this as MYC is a β-catenin transcriptional target and multiple embryonal and neural crest malignancies have oncogenic alterations in this pathway. NB cell lines without MYCN amplification express higher levels of MYC and β-catenin (with aberrant nuclear localization) than MYCN-amplified cell lines. Evidence for aberrant β-catenin–TCF transcriptional activity was demonstrated using expression profiles from 73 primary NBs. Findings included increased WNT ligands (WNT1, WNT6, WNT7A, WNT10B), DVL1 and TCF7 expression in high-risk NBs without MYCN amplification, consistent with canonical β-catenin signaling. More directly, Patterns of Gene Expression and Gene Set Enrichment Analyses demonstrated β-catenin target genes (for example, MYC, PPARD, NRCAM, CD44, TCF7) as coordinately upregulated in high-risk NBs without MYCN amplification in comparison to high-risk MYCN-amplified or intermediate-risk NBs, supporting pathway activation in this subset. Thus, high-risk NBs without MYCN amplification may deregulate MYC and other oncogenic genes via altered β-catenin signaling providing a potential candidate pathway for therapeutic inhibition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Allenspach EJ, Maillard I, Aster JC, Pear WS . (2002). Notch signaling in cancer. Cancer Biol Ther 1: 466–476.

    Article  Google Scholar 

  • Bafico A, Liu G, Goldin L, Harris V, Aaronson SA . (2004). An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6: 497–506.

    Article  CAS  Google Scholar 

  • Bellmeyer A, Krase J, Lindgren J, LaBonne C . (2003). The protooncogene c-myc is an essential regulator of neural crest formation in xenopus. Dev Cell 4: 827–839.

    Article  CAS  Google Scholar 

  • Blanc E, Roux GL, Benard J, Raguenez G . (2005). Low expression of Wnt-5a gene is associated with high-risk neuroblastoma. Oncogene 24: 1277–1283.

    Article  CAS  Google Scholar 

  • Chenn A, Walsh CA . (2002). Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297: 365–369.

    Article  CAS  Google Scholar 

  • Cohn SL, Salwen H, Quasney MW, Ikegaki N, Cowan JM, Herst CV et al. (1990). Prolonged N-myc protein half-life in a neuroblastoma cell line lacking N-myc amplification. Oncogene 5: 1821–1827.

    CAS  Google Scholar 

  • Cole MD, McMahon SB . (1999). The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18: 2916–2924.

    Article  CAS  Google Scholar 

  • Eggert A, Brodeur GM, Ikegaki N . (2000). Relative quantitative RT–PCR protocol for TrkB expression in neuroblastoma using GAPD as an internal control. Biotechniques 28: 681–682, 686, 688–691.

    Article  CAS  Google Scholar 

  • Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC . (2005). Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308: 1181–1184.

    Article  CAS  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  Google Scholar 

  • Goss KH, Groden J . (2000). Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol 18: 1967–1979.

    Article  CAS  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN . (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16: 653–699.

    Article  CAS  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  Google Scholar 

  • Hecht A, Kemler R . (2000). Curbing the nuclear activities of beta-catenin. Control over Wnt target gene expression. EMBO Rep 1: 24–28.

    Article  CAS  Google Scholar 

  • Kleber M, Lee HY, Wurdak H, Buchstaller J, Riccomagno MM, Ittner LM et al. (2005). Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. J Cell Biol 169: 309–320.

    Article  CAS  Google Scholar 

  • Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F et al. (1983). Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35: 359–367.

    Article  CAS  Google Scholar 

  • Kolligs FT, Nieman MT, Winer I, Hu G, Van Mater D, Feng Y et al. (2002). ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation. Cancer Cell 1: 145–155.

    Article  CAS  Google Scholar 

  • Lee HY, Kleber M, Hari L, Brault V, Suter U, Taketo MM et al. (2004). Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303: 1020–1023.

    Article  CAS  Google Scholar 

  • Manduchi E, Grant GR, McKenzie SE, Overton GC, Surrey S, Stoeckert Jr CJ . (2000). Generation of patterns from gene expression data by assigning confidence to differentially expressed genes. Bioinformatics 16: 685–698.

    Article  CAS  Google Scholar 

  • Maris JM, Denny CT . (2002). Focus on embryonal malignancies. Cancer Cell 2: 447–450.

    Article  CAS  Google Scholar 

  • Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK et al. (1999). Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med 341: 1165–1173.

    Article  CAS  Google Scholar 

  • Miller JR, Hocking AM, Brown JD, Moon RT . (1999). Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18: 7860–7872.

    Article  CAS  Google Scholar 

  • Moon RT, Bowerman B, Boutros M, Perrimon N . (2002). The promise and perils of Wnt signaling through beta-catenin. Science 296: 1644–1646.

    Article  CAS  Google Scholar 

  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A . (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5: 691–701.

    Article  CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    Article  CAS  Google Scholar 

  • Reya T, Clevers H . (2005). Wnt signalling in stem cells and cancer. Nature 434: 843–850.

    Article  CAS  Google Scholar 

  • Sadee W, Yu VC, Richards ML, Preis PN, Schwab MR, Brodsky FM et al. (1987). Expression of neurotransmitter receptors and myc protooncogenes in subclones of a human neuroblastoma cell line. Cancer Res 47: 5207–5212.

    CAS  Google Scholar 

  • Sinner D, Rankin S, Lee M, Zorn AM . (2004). Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development 131: 3069–3080.

    Article  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  Google Scholar 

  • Taipale J, Beachy PA . (2001). The hedgehog and Wnt signalling pathways in cancer. Nature 411: 349–354.

    Article  CAS  Google Scholar 

  • Thompson PM, Maris JM, Hogarty MD, Seeger RC, Reynolds CP, Brodeur GM et al. (2001). Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma. Cancer Res 61: 679–686.

    CAS  Google Scholar 

  • Voeller HJ, Truica CI, Gelmann EP . (1998). Beta-catenin mutations in human prostate cancer. Cancer Res 58: 2520–2523.

    CAS  Google Scholar 

  • Wang Q, Diskin S, Rappaport E, Attiyeh E, Mosse Y, Shue D et al. (2006). Integrative genomics identifies distinct molecular classes of neuroblastoma and demonstrates that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res 66: 6050–6062.

    Article  CAS  Google Scholar 

  • Zechner D, Fujita Y, Hulsken J, Muller T, Walther I, Taketo MM et al. (2003). Beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol 258: 406–418.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Garrett Brodeur and Mariucz Ratajczak (University of Pennsylvania) for providing cell lines, Kathleen R Cho and Rong Wu (University of Michigan) for assistance with β-cat:TCF reporter assays, Bert Vogelstein (Johns Hopkins University) for β-catenin reporter constructs, the Children's Oncology Group (COG) for primary NB materials, Eric Rappaport (Nucleic Acids/Protein Core at CHOP) for oligonucleotide array assistance, Francis Giardiello (Johns Hopkins Hereditary Colorectal Cancer Registry) for information on neuroblastic tumors in FAP kindreds and Harriet Pais for bioinformatics assistance. This work was supported in part by P01-CA97323, a Career Development Award from the Burroughs Wellcome Fund and the Richard and Sheila Sanford Chair in Pediatric Oncology (MDH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M D Hogarty.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Mazanek, P., Dam, V. et al. Deregulated Wnt/β-catenin program in high-risk neuroblastomas without MYCN amplification. Oncogene 27, 1478–1488 (2008). https://doi.org/10.1038/sj.onc.1210769

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210769

Keywords

This article is cited by

Search

Quick links