Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TAK1 is required for TGF-β1-mediated regulation of matrix metalloproteinase-9 and metastasis

Abstract

Transforming growth factor-β 1 (TGF-β1) signaling in tumor cells has been implicated in tumor angiogenesis and metastasis by regulating matrix proteolysis. Although MMP-9/gelatinase-B is an important component of these TGF-β1 responses, the mechanism of its regulation is not well understood. Here, we present evidence that TGF-β-activated protein kinase 1 (TAK1) is critical for TGF-β regulation of MMP-9 and the metastatic potential of breast cancer cell line MDA-MB-231. We found that suppression of TAK1 signaling by dominant-negative (dn) TAK1 or RNA interference (siRNA) reduces expression of MMP-9 and tumor cell invasion, without growth inhibition in cell culture. The orthotopic xenograft studies in SCID mice showed that suppression of TAK1 signaling by dn-TAK1 reduces tumor growth and formation of lung metastases. Dn-TAK1 reduced the proliferation Ki-67 index and neovasculature of orthotopic xenografts. TAK1-mediated regulation of MMP-9 involves NF-κB signaling. Dn-TAK1 reduces NF-κB transcriptional response and inhibition of NF-κB reduces expression of MMP-9 and activity of the MMP-9 promoter reporter. Together, these findings suggest that TAK1 contributes to TGF-β1-mediated tumor angiogenesis and metastasis via a mechanism involving the TAK1–NF-κB–MMP-9 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

MAPK:

mitogen-activated protein kinase

MMP-9:

matrix metalloproteinase-9

TAK1:

TGF-β-activated protein kinase 1

TGF-β:

transforming growth factor-β

References

  • Arsura M, FitzGerald MJ, Fausto N, Sonenshein GE . (1997). Nuclear factor-kappaB/Rel blocks transforming growth factor beta1-induced apoptosis of murine hepatocyte cell lines. Cell Growth Differ 8: 1049–1059.

    CAS  PubMed  Google Scholar 

  • Arsura M, Panta GR, Bilyeu JD, Cavin LG, Sovak MA, Oliver AA et al. (2003). Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22: 412–425.

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE et al. (1999). Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1: 260–266.

    Article  CAS  PubMed  Google Scholar 

  • Azuma M, Motegi K, Aota K, Yamashita T, Yoshida H, Sato M . (1999). TGF-[beta]1 inhibits NF-[kappa]B activity through induction of I[kappa]B-[alpha] expression in human salivary gland cells: a possible mechanism of growth suppression by TGF-[beta]1. Exp Cell Res 250: 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL . (2002). p38 mitogen-activated protein kinase is required for TGF{beta}-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115: 3193–3206.

    Article  CAS  PubMed  Google Scholar 

  • Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM . (2004). A critical role of tropomyosins in TGF-{beta} regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell 15: 4682–4694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL . (2000). Phosphatidylinositol 3-kinase function is required for TGFbeta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275: 36803–36810.

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL . (2001). Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 276: 46707–46713.

    Article  CAS  PubMed  Google Scholar 

  • Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M et al. (2000). A mechanism of suppression of TGF-beta /SMAD signaling by NF-kappa B/RelA. Genes Dev 14: 187–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR et al. (2004). Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64: 1675–1686.

    Article  CAS  PubMed  Google Scholar 

  • de Winter JP, Roelen BA, ten Dijke P, van der Burg B, van den Eijnden-van Raaij AJ . (1997). DPC4 (SMAD4) mediates transforming growth factor-beta1 (TGF-beta1) induced growth inhibition and transcriptional response in breast tumour cells. Oncogene 14: 1891–1899.

    Article  CAS  PubMed  Google Scholar 

  • Dechow TN, Pedranzini L, Leitch A, Leslie K, Gerald WL, Linkov I et al. (2004). Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc Natl Acad Soc 101: 10602–10607.

    Article  CAS  Google Scholar 

  • Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G et al. (2006). The tumor suppressor smad4 is required for transforming growth factor {beta}-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66: 2202–2209.

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Zhang YE . (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Dumont N, Bakin AV, Arteaga CL . (2003). Autocrine transforming growth factor-beta signaling mediates smad-independent motility in human cancer cells. J Biol Chem 278: 3275–3285.

    Article  CAS  PubMed  Google Scholar 

  • Dunker N, Krieglstein K . (2000). Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem 267: 6982–6988.

    Article  CAS  PubMed  Google Scholar 

  • Farina AR, Coppa A, Tiberio A, Tacconelli A, Turco A, Colletta G et al. (1998). Transforming growth factor-beta1 enhances the invasiveness of human MDA-MB-231 breast cancer cells by up-regulating urokinase activity. Int J Cancer 75: 721–730.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J . (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  • Gum R, Lengyel E, Juarez J, Chen JH, Sato H, Seiki M et al. (1996). Stimulation of 92-kDa gelatinase B promoter activity by ras is mitogen-activated protein kinase kinase 1-independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP-1 sequences. J Biol Chem 271: 10672–10680.

    Article  CAS  PubMed  Google Scholar 

  • Himelstein BP, Lee EJ, Sato H, Seiki M, Muschel RJ . (1997). Transcriptional activation of the matrix metalloproteinase-9 gene in an H-ras and v-myc transformed rat embryo cell line. Oncogene 14: 1995–1998.

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Jacobson K, Schaller MD . (2004). MAP kinases and cell migration. J Cell Sci 117: 4619–4628.

    Article  CAS  PubMed  Google Scholar 

  • Huang S, New L, Pan Z, Han J, Nemerow GR . (2000). Urokinase plasminogen activator/urokinase-specific surface receptor expression and matrix invasion by breast cancer cells requires constitutive p38alpha mitogen-activated protein kinase activity. J Biol Chem 275: 12266–12272.

    Article  CAS  PubMed  Google Scholar 

  • Iyer V, Pumiglia K, DiPersio CM . (2005). {alpha}3{beta}1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: a novel mechanism of integrin-mediated MMP gene expression. J Cell Sci 118: 1185–1195.

    Article  CAS  PubMed  Google Scholar 

  • Janji B, Melchior C, Gouon V, Vallar L, Kieffer N . (1999). Autocrine TGF-beta-regulated expression of adhesion receptors and integrin-linked kinase in HT-144 melanoma cells correlates with their metastatic phenotype. Int J Cancer 83: 255–262.

    Article  CAS  PubMed  Google Scholar 

  • Johansson N, Ala-aho R, Uitto V, Grenman R, Fusenig NE, Lopez-Otin C et al. (2000). Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J Cell Sci 113: 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Greten FR . (2005). NF-[kappa]B: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5: 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar M, Doody J, Timokhina I, Massague J . (1999). A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev 13: 804–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massague J . (1998). TGF-beta signal transduction. Annu Rev Biochem 67: 753–791.

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan RP, Chen F, Li W, Vig E, Harrington MA, Nakshatri H et al. (2000). Repression of transforming-growth-factor-beta-mediated transcription by nuclear factor kappaB. Biochem J 348: 591–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet Jr RJ, Sledge Jr GW . (1997). Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17: 3629–3639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata H, Sato H, Takatsuka J, De Luca LM . (2001). Human breast cancer MDA-MB-231 cells fail to express the neurofibromin protein, lack its type I mRNA isoform and show accumulation of P-MAPK and activated Ras. Cancer Lett 172: 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Roberts AB, Wakefield LM . (2003). The two faces of transforming growth factor {beta} in carcinogenesis. Proc Natl Acad Soc 100: 8621–8623.

    Article  CAS  Google Scholar 

  • Safina A, Vandette E, Bakin AV . (2007). ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene 26: 2407–2422.

    Article  CAS  PubMed  Google Scholar 

  • Saha D, Datta PK, Beauchamp RD . (2001). Oncogenic ras represses transforming growth factor-beta/smad signaling by degrading tumor suppressor Smad4. J Biol Chem 276: 29531–29537.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H, Miyoshi H, Toriumi W, Sugita T . (1999). Functional interactions of transforming growth factor beta-activated kinase 1 with Ikappa B kinases to stimulate NF-kappa B activation. J Biol Chem 274: 10641–10648.

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Seiki M . (1993). Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8: 395–405.

    CAS  PubMed  Google Scholar 

  • Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T et al. (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6: 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H, Iwata H, Masuyama N, Gotoh Y, Yamaguchi K, Irie K et al. (1998). Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J 17: 1019–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhirunnusorn P, Suzuki S, Kawasaki N, Saiki I, Sakurai H . (2005). Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-{beta}-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding Protein TAB1 and TAB2. J Biol Chem 280: 7359–7368.

    Article  CAS  PubMed  Google Scholar 

  • Sliva D, Rizzo MT, English D . (2002). Phosphatidylinositol 3-kinase and NF-kappa B regulate motility of invasive MDA-MB-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. J Biol Chem 277: 3150–3157.

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Cuervo C, Merrell MA, Watson L, Harris KW, Rosenthal EL, Vaananen HK et al. (2004). Breast cancer cells with inhibition of p38alpha have decreased MMP-9 activity and exhibit decreased bone metastasis in mice. Clin Exp Metastasis 21: 525–533.

    Article  CAS  PubMed  Google Scholar 

  • Tobe M, Isobe Y, Tomizawa H, Nagasaki T, Takahashi H, Hayashi H . (2003). A novel structural class of potent inhibitors of NF-[kappa]B activation: structure-activity relationships and biological effects of 6-aminoquinazoline derivatives. Bioorg Med Chem 11: 3869–3878.

    Article  CAS  PubMed  Google Scholar 

  • Van den Steen P, Dubois B, Nelissen I, Rudd P, Dwek R, Opdenakker G . (2002). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37: 375–536.

    Article  CAS  PubMed  Google Scholar 

  • Verrecchia F, Tacheau C, Wagner EF, Mauviel A . (2003). A central role for the JNK pathway in mediating the antagonistic activity of pro-inflammatory cytokines against transforming growth factor-beta-driven SMAD3/4-specific gene expression. J Biol Chem 278: 1585–1593.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Huang XR, Li AG, Liu F, Li J-H, Truong LD et al. (2005). Signaling mechanism of TGF-{beta}1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol 16: 1371–1383.

    Article  CAS  PubMed  Google Scholar 

  • Weidner N, Semple J, Welch W, Folkman J . (1991). Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Wexler H . (1966). Accurate identification of experimental pulmonary metastases. J Natl Cancer Inst 36: 641–645.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al. (1995). Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270: 2008–2011.

    Article  CAS  PubMed  Google Scholar 

  • Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R et al. (1999). TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103: 197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hiroaki Sakurai and Jackie Bromberg for providing reagents; Heinz Baumann for critical reading of the manuscript; Mary M Vaughan and Karoly Toth for assistance with the immunohistochemistry and histopathology. This work was supported by PHS grant R01 CA95263 and USAMRMC grant DAMD17-02-01-0602 (to AVB) and in part by the Roswell Park Cancer Institute Cancer Center Support Grant CA 16056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A V Bakin.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safina, A., Ren, MQ., Vandette, E. et al. TAK1 is required for TGF-β1-mediated regulation of matrix metalloproteinase-9 and metastasis. Oncogene 27, 1198–1207 (2008). https://doi.org/10.1038/sj.onc.1210768

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210768

Keywords

This article is cited by

Search

Quick links