Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Hematopoietic cytokine receptor signaling

Abstract

Hematopoiesis is the cumulative result of intricately regulated signaling pathways that are mediated by cytokines and their receptors. Proper culmination of these diverse pathways forms the basis for an orderly generation of different cell types. Recent studies conducted over the past 10–15 years have revealed that hematopoietic cytokine receptor signaling is largely mediated by a family of tyrosine kinases termed Janus kinases (JAKs) and their downstream transcription factors termed STATs (signal transducers and activators of transcription). Aberration in these pathways, such as that caused by the recently identified JAK2V617F mutation, is an underlying cause for diseases such as leukemias and other myeloproliferative disorders. This recent discovery, when coupled with the fact that STATs are activated by oncoproteins such as BCR-ABL, underscores the importance of the JAK-STAT pathway in both normal cellular development and disease states.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alvarez JV, Frank DA . (2004). Genome-wide analysis of STAT target genes. Cancer Biol Ther 3: 1045–1050.

    CAS  PubMed  Google Scholar 

  • Barry SC, Korpelainen E, Sun Q, Stomski FC, Moretti PA, Wakao H et al. 1997. Roles of the N and C terminal domains of the interleukin-3 receptor alpha chain in receptor function. Blood 89: 842–852.

    CAS  PubMed  Google Scholar 

  • Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  • Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA et al. (1999). Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia 13: 1109–1166.

    CAS  PubMed  Google Scholar 

  • Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE . (1996). Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci USA 93: 7673–7678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caldenhoven E, van Dijk T, Raaijmakers JA, Lammers JW, Koenderman L, De Groot RP . (1995). Activation of the STAT3/acute phase response factor transcription factor by interleukin-5. J Biol Chem 270: 25778–25784.

    CAS  PubMed  Google Scholar 

  • Cao X, Tay A, Guy GR, Tan YH . (1996). Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell Biol 16: 1595–1603.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlesso N, Frank DA, Griffin JD . (1996). Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 183: 811–820.

    CAS  PubMed  Google Scholar 

  • Chaturvedi P, Reddy MV, Reddy EP . (1998). Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation. Oncogene 16: 1749–1758.

    CAS  PubMed  Google Scholar 

  • Chaturvedi P, Sharma S, Reddy EP . (1997). Abrogation of interleukin-3 dependence of myeloid cells by the v-src oncogene requires SH2 and SH3 domains which specify activation of STATs. Mol Cell Biol 17: 3295–3304.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY . (1996). Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272: 219–222.

    Google Scholar 

  • Colamonici O, Yan H, Domanski P, Handa R, Smalley D et al. (1994a). Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol Cell Biol 14: 8133–8142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colamonici OR, Uyttendaele H, Domanski P, Yan H, Krolewski JJ . (1994b). Ligand-independent anti-oncogenic activity of the alpha subunit of the type I interferon receptor. J Biol Chem 269: 3518–3522.

    CAS  PubMed  Google Scholar 

  • Copeland NG, Gilbert DJ, Schindler C, Zhong Z, Wen Z, Darnell Jr JE et al. (1995). Distribution of the mammalian Stat gene family in mouse chromosomes. Genomics 29: 225–228.

    CAS  PubMed  Google Scholar 

  • Danial NN, Losman JA, Lu T, Yip N, Krishnan K, Krolewski J et al. (1998). Direct interaction of Jak1 and v-Abl is required for v-Abl-induced activation of STATs and proliferation. Mol Cell Biol 18: 6795–6804.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danial NN, Pernis A, Rothman PB . (1995). Jak-STAT signaling induced by the v-abl oncogene. Science 269: 1875–1877.

    CAS  PubMed  Google Scholar 

  • Darnell Jr JE . (1997). STATs and gene regulation. Science 277: 1630–1635.

    CAS  PubMed  Google Scholar 

  • Darnell Jr JE, Kerr IM, Stark GR . (1994). Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1421.

    CAS  PubMed  Google Scholar 

  • David M, Chen HE, Goelz S, Larner AC, Neel BG . (1995a). Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 15: 7050–7058.

    CAS  PubMed  PubMed Central  Google Scholar 

  • David M, Petricoin III E, Benjamin C, Pine R, Weber MJ, Larner AC . (1995b). Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science 269: 1721–1723.

    CAS  PubMed  Google Scholar 

  • Duhe RJ, Farrar WL . (1995). Characterization of active and inactive forms of the JAK2 protein-tyrosine kinase produced via the baculovirus expression vector system. J Biol Chem 270: 23084–23089.

    CAS  PubMed  Google Scholar 

  • Durand C, Dzierzak E . 2005. Embryonic beginnings of adult hematopoietic stem cells. Haematologica 90: 100–108.

    PubMed  Google Scholar 

  • Eder M, Ernst TJ, Ganser A, Jubinsky PT, Inhorn R, Hoelzer D et al. (1994). A low affinity chimeric human alpha/beta-granulocyte-macrophage colony-stimulating factor receptor induces ligand-dependent proliferation in a murine cell line. J Biol Chem 269: 30173–30180.

    CAS  PubMed  Google Scholar 

  • Eilers A, Kanda K, Klose B, Krolewski J, Decker T . (1996). Constitutive STAT1 tyrosine phosphorylation in U937 monocytes overexpressing the TYK2 protein tyrosine kinase does not induce gene transcription. Cell Growth Differ 7: 833–840.

    CAS  PubMed  Google Scholar 

  • Ema H, Nakauchi H . (2003). Self-renewal and lineage restriction of hematopoietic stem cells. Curr Opin Gen Dev 13: 508–512.

    CAS  Google Scholar 

  • Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al. (1997). A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387: 921–924.

    CAS  PubMed  Google Scholar 

  • Feener EP, Rosario F, Dunn SL, Stancheva Z, Myers Jr MG . (2004). Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol Cell Biol 24: 1968–4978.

    Google Scholar 

  • Firmbach-Kraft I, Byers M, Shows T, Dalla-Favera R, Krolewski JJ . (1990). tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene 5: 1329–1336.

    CAS  PubMed  Google Scholar 

  • Flores-Morales A, Pircher TJ, Silvennoinen O, Gustafsson JA, Sanchez-Gomez M, Norstedt G et al. (1998). In vitro interaction between STAT 5 and JAK 2; dependence upon phosphorylation status of STAT 5 and JAK 2. Mol Cell Endocrinol 138: 1–10.

    CAS  PubMed  Google Scholar 

  • Frank DA, Varticovski L . (1996). BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 10: 1724–1730.

    CAS  PubMed  Google Scholar 

  • Funakoshi-Tago M, Pelletier S, Matsuda T, Parganas E, Ihle JN . (2006). Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J 25: 4763–4772.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gartsbein M, Alt A, Hashimoto K, Nakajima K, Kuroki T, Tennenbaum T . (2006). The role of protein kinase C delta activation and STAT3 Ser727 phosphorylation in insulin-induced keratinocyte proliferation. J Cell Sci 119: 470–481.

    CAS  PubMed  Google Scholar 

  • Gauzzi MC, Barbieri G, Richter MF, Uz G, Ling L, Fellous M et al. (1997). The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor. Proc Natl Acad Sci USA 94: 11839–11844.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gearing DP, King JA, Gough NM, Nicola NA . (1989). Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J 8: 3667–3676.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M et al. (2006). Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12: 11–19.

    CAS  PubMed  Google Scholar 

  • Haan C, Heinrich PC, Behrmann I . (2002). Structural requirements of the interleukin-6 signal transducer gp130 for its interaction with Janus kinase 1: the receptor is crucial for kinase activation. Biochem J 361: 105–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haan C, Kreis S, Margue C, Behrmann I . (2006). Jaks and cytokine receptors—an intimate relationship. Biochem Pharmacol 72: 1538–1546.

    CAS  PubMed  Google Scholar 

  • Haque SJ, Harbor P, Tabrizi M, Yi T, Williams BR . (1998). Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J Biol Chem 273: 33893–33896.

    CAS  PubMed  Google Scholar 

  • Harpur AG, Andres AC, Ziemiecki A, Aston RR, Wilks AF . (1992). JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7: 1347–1353.

    CAS  PubMed  Google Scholar 

  • Haura EB, Turkson J, Jove R . (2005). Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol 2: 315–324.

    CAS  PubMed  Google Scholar 

  • Hayashida K, Kitamura T, Gorman DM, Arai K, Yokota T, Miyajima A . (1990). Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci USA 87: 9655–9659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ . (1996). Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266: 383–402.

    CAS  PubMed  Google Scholar 

  • Horvath CM, Wen Z, Darnell Jr JE . (1995). A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 9: 984–994.

    CAS  PubMed  Google Scholar 

  • Huang LJ, Constantinescu SN, Lodish HF . (2001). The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell Biol 8: 1327–1338.

    CAS  Google Scholar 

  • Hunter T . (1993). Signal transduction. Cytokine Connections Nat 366: 114–116.

    CAS  Google Scholar 

  • Ihle JN, Nosaka T, Thierfelder W, Quelle FW, Shimoda K . (1997). Jaks and Stats in cytokine signaling. Stem Cells 15: 105–111; discussion 112.

    CAS  PubMed  Google Scholar 

  • Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O . (1995). Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol 13: 369–398.

    CAS  PubMed  Google Scholar 

  • Ilaria Jr RL, Van Etten RA . (1996). P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271: 31704–31710.

    CAS  PubMed  Google Scholar 

  • Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G et al. (2001). CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409: 349–354.

    CAS  PubMed  Google Scholar 

  • Itoh N, Yonehara S, Schreurs J, Gorman DM, Maruyama K, Ishii A et al. (1990). Cloning of an interleukin-3 receptor gene: a member of a distinct receptor gene family. Science 247: 324–327.

    CAS  PubMed  Google Scholar 

  • Jain N, Zhang T, Fong SL, Lim CP, Cao X . (1998). Repression of Stat3 activity by activation of mitogen-activated protein kinase (MAPK). Oncogene 17: 3157–3167.

    CAS  PubMed  Google Scholar 

  • Jain N, Zhang T, Kee WH, Li W, Cao X . (1999). Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem 274: 24392–24400.

    CAS  PubMed  Google Scholar 

  • James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C et al. (2005). A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434: 1144–1148.

    CAS  PubMed  Google Scholar 

  • Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T . (1996). Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol 16: 6985–6992.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jubinsky PT, Nathan DG, Wilson DJ, Sieff CA . (1993). A low-affinity human granulocyte-macrophage colony-stimulating factor/murine erythropoietin hybrid receptor functions in murine cell lines. Blood 81: 587–591.

    CAS  PubMed  Google Scholar 

  • Kampa D, Burnside J . (2000). Computational and functional analysis of the putative SH2 domain in Janus kinases. Biochem Biophys Res Commun 278: 175–182.

    CAS  PubMed  Google Scholar 

  • Kawamura M, McVicar DW, Johnston JA, Blake TB, Chen YQ, Lal BK et al. (1994). Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc Natl Acad Sci USA 9: 6374–6378.

    Google Scholar 

  • Kazansky AV, Kabotyanski EB, Wyszomierski SL, Mancini MA, Rosen JM . (1999). Differential effects of prolactin and src/abl kinases on the nuclear translocation of STAT5B and STAT5A. J Biol Chem 274: 22484–22492.

    CAS  PubMed  Google Scholar 

  • Khwaja A . (2006). The role of Janus kinases in haemapoiesis and haematological malignancy. Br J Haematol 134: 366–384.

    CAS  PubMed  Google Scholar 

  • Kishimoto T, Taga T, Akira S . (1994). Cytokine signal transduction. Cell 76: 253–262.

    CAS  PubMed  Google Scholar 

  • Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW . (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285: 1–24.

    CAS  PubMed  Google Scholar 

  • Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF . (1995). Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80: 729–738.

    CAS  PubMed  Google Scholar 

  • Kohlhuber F, Rogers NC, Watling D, Feng J, Guschin D, Briscoe J et al. (1997). A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol Cell Biol 17: 695–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotenko SV, Izotova LS, Pollack BP, Muthukumaran G, Paukku K, Silvennoinen O et al. (1996). Other kinases can substitute for Jak2 in signal transduction by interferon-gamma. J Biol Chem 271: 17174–17182.

    CAS  PubMed  Google Scholar 

  • Kouro T, Kikuchi Y, Kanazawa H, Hirokawa K, Harada N, Shiiba M et al. (1996). Critical proline residues of the cytoplasmic domain of the IL-5 receptor alpha chain and its function in IL-5-mediated activation of JAK kinase and STAT5. Int Immunol 8: 237–245.

    CAS  PubMed  Google Scholar 

  • Kovarik P, Mangold M, Ramsauer K, Heidari H, Steinborn R, Zotter A et al. (2001). Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J 20: 91–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs DL, Hilton DJ . (2001). SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19: 378–387.

    CAS  PubMed  Google Scholar 

  • Krishnan K, Pine R, Krolewski JJ . (1997). Kinase-deficient forms of Jak1 and Tyk2 inhibit interferon alpha signaling in a dominant manner. Eur J Biochem 247: 298–305.

    CAS  PubMed  Google Scholar 

  • Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. (2005). A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352: 1779–1790.

    CAS  PubMed  Google Scholar 

  • Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. (2005). Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7: 387–397.

    CAS  PubMed  Google Scholar 

  • Lin JX, Mietz J, Modi WS, John S, Leonard WJ . (1996). Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells. J Biol Chem 271: 10738–10744.

    CAS  PubMed  Google Scholar 

  • Lu X, Chen J, Sasmono RT, Hsi ED, Sarosiek KA, Tiganis T et al. (2007). T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol Cell Biol 27: 166–179.

    Google Scholar 

  • Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S et al. (2005). Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 102: 18962–18967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuguchi T, Zhao Y, Lilly MB, Kraft AS . (1997). The cytoplasmic domain of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha subunit is essential for both GM-CSF-mediated growth and differentiation. J Biol Chem 272: 17450–17459.

    CAS  PubMed  Google Scholar 

  • Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H et al. (1997). CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89: 3148–3154.

    CAS  PubMed  Google Scholar 

  • Migone TS, Cacalano NA, Taylor N, Yi T, Waldmann TA, Johnston JA . (1998). Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T cells. Proc Natl Acad Sci USA 95: 3845–3850.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyajima A, Kitamura T, Harada N, Yokota T, Arai K . (1992). Cytokine receptors and signal transduction. Annu Rev Immunol 10: 295–331.

    CAS  PubMed  Google Scholar 

  • Mui AL, Wakao H, Harada N, O’Farrell AM, Miyajima A . (1995a). Interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5 transduce signals through two forms of STAT5. J Leukoc Biol 57: 799–803.

    CAS  PubMed  Google Scholar 

  • Mui AL, Wakao H, O’Farrell AM, Harada N, Miyajima A . (1995b). Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J 14: 1166–1175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Takaki S, Migita M, Kikuchi Y, Tominaga A, Takatsu K . (1992). Molecular cloning and expression of the human interleukin 5 receptor. J Exp Med 175: 341–351.

    CAS  PubMed  Google Scholar 

  • Murray PJ . (2007). The JAK–STAT signaling pathway: input and output regulation. J Immunol 78: 2623–2629.

    Google Scholar 

  • Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP et al. (2001). TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem 276: 47771–47774.

    CAS  PubMed  Google Scholar 

  • Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A et al. (1997). Structure and function of a new STAT-induced STAT inhibitor. Nature 387: 924–929.

    CAS  PubMed  Google Scholar 

  • Neel BG, Gu H, Pao L . (2003). The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28: 284–293.

    CAS  PubMed  Google Scholar 

  • Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. (1999). Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 189: 1229–1242.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu G, Shain KH, Huang M, Ravi R, Bedi A, Dalton WS et al. (2001). Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. Cancer Res 61: 3276–3280.

    CAS  PubMed  Google Scholar 

  • O’Shea JJ, Gadina M, Schreiber RD . (2002). Cytokine signaling in 2002: NEw surprises in the Jak/Stat pathway. Cell 109: S121–S131.

    PubMed  Google Scholar 

  • Pallen CJ, Tan YH, Guy GR . (1992). Protein phosphatases in cell signalling. Curr Opin Cell Biol 4: 1000–1007.

    CAS  PubMed  Google Scholar 

  • Pellegrini S, Dusanter-Fourt I . 1997. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem 248: 615–633.

    CAS  PubMed  Google Scholar 

  • Quelle FW, Thierfelder W, Witthuhn BA, Tang B, Cohen S, Ihle JN . (1995). Phosphorylation and activation of the DNA binding activity of purified Stat1 by the Janus protein-tyrosine kinases and the epidermal growth factor receptor. J Biol Chem 270: 20775–20780.

    CAS  PubMed  Google Scholar 

  • Ragimbeau J, Dondi E, Alcover A, Eid P, Uze G, Pellegrini S . (2003). The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J 22: 537–547.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rakesh K, Agrawal DK . (2005). Controlling cytokine signaling by constitutive inhibitors. Biochem Pharmacol 70: 649–657.

    CAS  PubMed  Google Scholar 

  • Rane SG, Reddy EP . (1994). JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene 9: 2415–2423.

    CAS  PubMed  Google Scholar 

  • Reddy EP, Korapati A, Chaturvedi P, Rane S . (2000). IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19: 2532–2547.

    CAS  PubMed  Google Scholar 

  • Richter MF, Duménil G, Uzé G, Fellous M, Pellegrini S . (1998). Specific contribution of Tyk2 JH regions to the binding and the expression of the interferon alpha/beta receptor component IFNAR1. J Biol Chem 273: 24723–24729.

    CAS  PubMed  Google Scholar 

  • Rosmarin AG, Yang Z, Resendes KK . (2005). Transcriptional regulation in myelopoiesis: hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 33: 131–143.

    CAS  PubMed  Google Scholar 

  • Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M et al. (1994). Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266: 1042–1045.

    CAS  PubMed  Google Scholar 

  • Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ et al. (1995). Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270: 797–800.

    CAS  PubMed  Google Scholar 

  • Saharinen P, Silvennoinen O . (2002). The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 277: 47954–47963.

    CAS  PubMed  Google Scholar 

  • Saharinen P, Takaluoma K, Silvennoinen O . (2000). Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 20: 3387–3395.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saharinen P, Vihinen M, Silvennoinen O . (2003). Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Cell Biol 14: 1448–1459.

    CAS  Google Scholar 

  • Schaefer TS, Sanders LK, Nathans D . (1995). Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci USA 92: 9097–9101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler C, Strehlow I . (2000). Cytokines and STAT signaling. Adv Pharmacol 47: 113–174.

    CAS  PubMed  Google Scholar 

  • Seki Y, Hayashi K, Matsumoto A, Seki N, Tsukada J, Ransom J et al. (2002). Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci USA 99: 13003–13008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ . (2002). The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol 12: 446–453.

    CAS  PubMed  Google Scholar 

  • Smith A, Metcalf D, Nicola NA . (1997). Cytoplasmic domains of the common beta-chain of the GM-CSF/IL-3/IL-5 receptors that are required for inducing differentiation or clonal suppression in myeloid leukaemic cell lines. EMBO J 16: 451–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl N, Yancopoulos GD . (1993). The alphas, betas, and kinases of cytokine receptor complexes. Cell 74: 587–590.

    CAS  PubMed  Google Scholar 

  • Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al. (1997). A family of cytokine-inducible inhibitors of signalling. Nature 387: 917–921.

    CAS  PubMed  Google Scholar 

  • Takahashi T, Shirasawa T . (1994). Molecular cloning of rat JAK3, a novel member of the JAK family of protein tyrosine kinases. FEBS Lett 342: 124–128.

    CAS  PubMed  Google Scholar 

  • Tanaka T, Soriano MA, Grusby MJ . (2005). SLIM is a nuclear ubiquitin E3 ligase that negatively regulates STAT signaling. Immunity 22: 729–736.

    CAS  PubMed  Google Scholar 

  • Taniguchi T . (1995). Cytokine signaling through non-receptor tyrosine kinases. Science 268: 251–255.

    CAS  PubMed  Google Scholar 

  • ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M et al. (2002). Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22: 5662–5668.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O . (2002). Regulation of Jak2 through the ubiquitin–proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 22: 3316–3326.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ungureanu D, Vanhatupa S, Gronholm J, Palvimo JJ, Silvennoinen O . (2005). SUMO-1 conjugation selectively modulates STAT1-mediated gene responses. Blood 106: 224–226.

    CAS  PubMed  Google Scholar 

  • Ungureanu D, Vanhatupa S, Kotaja N, Yang J, Aittomaki S, Janne OA et al. (2003). PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102: 3311–3313.

    CAS  PubMed  Google Scholar 

  • Valentino L, Pierre J . (2006). JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 71: 713–721.

    CAS  PubMed  Google Scholar 

  • Verdier F, Chretien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S et al. (1998). Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J BiolChem 273: 28185–28190.

    CAS  Google Scholar 

  • Waiboci LW, Ahmed CM, Mujtaba MG, Flowers LO, Martin JP, Haider MI et al. (2007). Both the suppressor of cytokine signaling 1 (SOCS-1) kinase inhibitory region and SOCS-1 mimetic bind to JAK2 autophosphorylation site: implications for the development of a SOCS-1 antagonist. J Immunol 178: 5058–5068.

    CAS  PubMed  Google Scholar 

  • Wang Y, Morella KK, Ripperger J, Lai CF, Gearing DP, Fey GH et al. (1995). Receptors for interleukin-3 (IL-3) and growth hormone mediate an IL-6-type transcriptional induction in the presence of JAK2 or STAT3. Blood 86: 1671–1679.

    CAS  PubMed  Google Scholar 

  • Watowich SS, Hilton DJ, Lodish HF . (1994). Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. Mol Cell Biol 14: 3535–3549.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Z, Zhong Z, Darnell Jr JE . (1995). Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82: 241–250.

    CAS  PubMed  Google Scholar 

  • Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zürcher G, Ziemiecki A . (1991). Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol 11: 2057–2065.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ . (1999). Signal transduction in the erythropoietin receptor system. Exp Cell Res 253: 143–156.

    CAS  PubMed  Google Scholar 

  • Xu X, Sun YL, Hoey T . (1996). Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 272: 794–797.

    Google Scholar 

  • Yamada T, Zhu D, Saxon A, Zhang K . (2002). CD45 controls interleukin-4-mediated IgE class switch recombination in human B cells through its function as a Janus kinase phosphatase. J Biol Chem 277: 28830–28835.

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Quelle FW, Thierfelder WE, Kreider BL, Gilbert DJ, Jenkins NA et al. (1994). Stat4, a novel gamma interferon activation site-binding protein expressed in early myeloid differentiation. Mol Cell Biol 14: 4342–4349.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi T, Mui AL, Krystal G, Ihle JN . (1993). Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor beta chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol Cell Biol 13: 7577–7586.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG et al. (1995). A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 14: 2816–2826.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J et al. (1995). Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269: 81–83.

    CAS  PubMed  Google Scholar 

  • Zhang X, Blenis J, Li H, Schindler C, Chen-Kiang S . (1995). Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science 267: 1990–1994.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (5RO1HL080666-02) and the Department of Defense (W81XWH-06-1-0267) to EPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E P Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, S., Rane, S. & Reddy, E. Hematopoietic cytokine receptor signaling. Oncogene 26, 6724–6737 (2007). https://doi.org/10.1038/sj.onc.1210757

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210757

Keywords

This article is cited by

Search

Quick links