Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Defective TGF-β signaling sensitizes human cancer cells to rapamycin

Abstract

mTOR, the mammalian target of rapamycin, is a critical target of survival signals in many human cancers. In the absence of serum, rapamycin induces apoptosis in MDA-MB-231 human breast cancer cells. However, in the presence of serum, rapamycin induces G1 cell cycle arrest—indicating that a factor(s) in serum suppresses rapamycin-induced apoptosis. We report here that transforming growth factor-β (TGF-β) suppresses rapamycin-induced apoptosis in serum-deprived MDA-MB-231 cells in a protein kinase Cδ (PKCδ)-dependent manner. Importantly, if TGF-β signaling or PKCδ was suppressed, rapamycin induced apoptosis rather than G1 arrest in the presence of serum. And, if cells were allowed to progress into S phase, rapamycin induced apoptosis in the presence of serum. BT-549 and MDA-MB-468 breast, and SW-480 colon cancer cells have defects in TGF-β signaling and rapamycin induced apoptosis in these cells in the presence of either serum or TGF-β. Thus, in the absence of TGF-β signaling, rapamycin becomes cytotoxic rather than cytostatic. Importantly, this study provides evidence indicating that tumors with defective TGF-β signaling—common in colon and pancreatic cancers—will be selectively sensitive to rapamycin or other strategies that target mTOR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Baserga R, Peruzzi F, Reiss K . (2003). The IGF-1 receptor in cancer biology. Int J Cancer 107: 873–877.

    Article  CAS  Google Scholar 

  • Borel F, Lacroix FB, Margolis RL . (2002). Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S-phase stasis. J Cell Sci 115: 2829–2838.

    CAS  Google Scholar 

  • Chen CR, Kang Y, Massague J . (2001). Defective repression of c-Myc in breast cancer cells: a loss at the core of the transforming growth factor-β growth arrest program. Proc Natl Acad Sci USA 98: 992–999.

    Article  CAS  Google Scholar 

  • Chen Y, Rodrik V, Foster DA . (2005). Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene 24: 672–679.

    Article  CAS  Google Scholar 

  • Chen Y, Zheng Y, Foster DA . (2003). Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 22: 3937–3942.

    Article  CAS  Google Scholar 

  • Fink SP, Mikkola D, Willson JK, Maekowitz S . (2004). TGF-β-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Oncogene 22: 1317–1323.

    Article  Google Scholar 

  • Fink SP, Swinler SE, Lutterbaugh JD, Massague J, Thiagalingam S, Kinzler KW et al. (2001). Transforming growth factor-β-induced growth inhibition in a Smad4 mutant colon adenoma cell line. Cancer Res 61: 256–260.

    CAS  Google Scholar 

  • Foster DA . (2004). Targeting mTOR-mediated survival signals in anticancer therapeutic strategies. Expert Rev Anticancer Ther 4: 691–701.

    Article  CAS  Google Scholar 

  • Foster DA . (2006). Phospholipase D survival signals as a therapeutic target in cancer. Curr Signal Transduct Ther 1: 295–303.

    Article  CAS  Google Scholar 

  • Foster DA . (2007). Regulation of mTOR by phosphatidic acid? Cancer Res 67: 1–4.

    Article  CAS  Google Scholar 

  • Guertin DA, Sabatini DM . (2005). An expanding role for mTOR in cancer. Trends Mol Med 11: 353–361.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Ho A, Dowdy SF . (2002). Regulation of G(1) cell-cycle progression by oncogenes and tumor suppressor genes. Curr Opin Genet Dev 12: 47–52.

    Article  CAS  Google Scholar 

  • Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al. (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62: 65–74.

    Article  CAS  Google Scholar 

  • Jackson D, Foster DA . (2004). The enigmatic protein kinase Cδ: complex roles in cell proliferation and survival. FASEB J 18: 627–636.

    Article  CAS  Google Scholar 

  • Jackson D, Zheng Y, Lyo D, Shen Y, Nakayama K, Humphries M et al. (2005). Suppression of cell migration by protein kinase Cδ. Oncogene 24: 3067–3072.

    Article  CAS  Google Scholar 

  • Jaffe EM, Hruban RH, Canto M, Kern SE . (2002). Focus on pancreas cancer. Cancer Cell 2: 25–28.

    Article  Google Scholar 

  • Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, van den Eijnden-van Raaij AJ, van der Saag PT et al. (1995). Resistance to transforming growth factor β and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ 6: 1151–1161.

    CAS  Google Scholar 

  • Law BK, Chytil A, Dumont N, Hamilton EG, Waltner-Law ME, Aakre ME et al. (2002). Rapamycin potentiates transforming growth factor β-induced growth arrest in nontransformed, oncogene-transformed, and human cancer cells. Mol Cell Biol 22: 8184–8198.

    Article  CAS  Google Scholar 

  • Lu Z, Hornia A, Jiang YW, Frankel P, Zang Q, Ohno S et al. (1997). Tumor-promotion by depleting cells of protein kinase Cδ. Mol Cell Biol 17: 3418–3428.

    Article  CAS  Google Scholar 

  • Luo J, Manning BD, Cantley LC . (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4: 257–262.

    Article  CAS  Google Scholar 

  • Miyaki M, Kuroki T . (2003). Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun 306: 799–804.

    Article  CAS  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R et al. (2001). Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98: 10314–10319.

    Article  CAS  Google Scholar 

  • Perillan PR, Chen M, Potts EA, Simard JM . (2002). Transforming growth factorβ 1 regulates Kir2.3 inward rectifier K+ channels via phospholipase C and protein kinase C-δ in reactive astrocytes from adult rat brain. J Biol Chem 277: 1974–1980.

    Article  CAS  Google Scholar 

  • Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J et al. (2001). An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Natl Acad Sci USA 98: 10320–10325.

    Article  CAS  Google Scholar 

  • Popat S, Houlston RS . (2005). A systematic review and meta-analysis of the relationship between chromosome 18q genotype, DCC status and colorectal cancer prognosis. Eur J Cancer 41: 2060–2070.

    Article  CAS  Google Scholar 

  • Runyan CE, Schnaper HW, Poncelet AC . (2003). Smad3 and PKCδ mediate TGF-β1-induced collagen I expression in human mesangial cells. Am J Physiol Renal Physiol 285: F413–F422.

    Article  Google Scholar 

  • Sawyers CL . (2003). Will mTOR inhibitors make it as cancer drugs? Cancer Cell 4: 343–348.

    Article  CAS  Google Scholar 

  • Schmelzle T, Hall MN . (2000). TOR, a central controller of cell growth. Cell 103: 253–262.

    Article  CAS  Google Scholar 

  • Siegel PM, Massague J . (2003). Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 3: 807–821.

    Article  CAS  Google Scholar 

  • Song K, Wang H., Krebs TL, Danielpour D . (2006). Novel roles of Akt and mTOR in suppressing TGF-β/ALK5-mediated Smad3 activation. EMBO J 25: 58–69.

    Article  CAS  Google Scholar 

  • van der Poel HG, Hanrahan C, Zhong H, Simons JW . (2003). Rapamycin induces Smad activity in prostate cancer cell lines. Urol Res 30: 380–386.

    CAS  PubMed  Google Scholar 

  • van der Poel HG . (2004). Mammalian target of rapamycin and 3-phosphatidylinositol 3-kinase pathway inhibition enhances growth inhibition of transforming growth factor-β1 in prostate cancer cells. J Urol 172: 1333–1337.

    Article  CAS  Google Scholar 

  • Zhong M, Shen Y, Zheng Y, Joseph T, Jackson D, Beychenok S et al. (2003). Phospholipase D prevents apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 302: 615–619.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute CA46677 and a SCORE grant from the National Institutes of Health GM60654. Research Centers in Minority Institutions award RR-03037 from the National Center for Research Resources of the National Institutes of Health, which supports infrastructure and instrumentation in the Biological Sciences Department at Hunter College, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Foster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadir, N., Jackson, D., Lee, E. et al. Defective TGF-β signaling sensitizes human cancer cells to rapamycin. Oncogene 27, 1055–1062 (2008). https://doi.org/10.1038/sj.onc.1210721

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210721

Keywords

This article is cited by

Search

Quick links