Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of estrogen signaling pathways collaborates with loss of Brca1 to promote development of ERα-negative and ERα-positive mammary preneoplasia and cancer

Abstract

BRCA1 can regulate estrogen receptor-α (ERα) activity. This study tested the hypotheses that Brca1 loss in mammary epithelium alters the estrogenic growth response and that exposure to increased estrogen or ERα collaborates with Brca1 deficiency to accelerate preneoplasia and cancer development. Longer ductal extension was found in mammary glands of Brca1f/f;MMTV-Cre mice during puberty as compared to wild-type mice. Terminal end bud differentiation was impaired in Brca1 mutant mice with preservation of prolactin-induced alveolar differentiation. Exogenous estrogen stimulated an abnormal sustained increase in mammary epithelial cell proliferation and the appearance of ERα-negative preneoplasia in postpubertal Brca1 mutant mice. Carcinogenesis was investigated using Brca1f/f;MMTV-Cre mice hemizygous for p53. Exogenous estrogen increased the percentage of mice with multiple hyperplastic alveolar nodules. Targeted conditional ERα overexpression in mammary epithelial cells of mice that were Brca1 mutant and hemizygous for p53 increased the percentage of mice exhibiting multiple hyperplastic nodules, invasive mammary cancers and cancer multiplicity. Significantly more than half of the preneoplasia and cancers were ERα negative even as their initiation was promoted by ERα overexpression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arbeit JM, Howley PM, Hanahan D . (1996). Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci USA 93: 2930–2935.

    Article  CAS  PubMed  Google Scholar 

  • Bachelier R, Xu X, Li C, Qiao W, Furth PA, Lubet RA et al. (2005). Effect of bilateral oophorectomy on mammary tumor formation in BRCA1 mutant mice. Oncol Rep 14: 1117–1120.

    PubMed  Google Scholar 

  • Bocchinfuso WP, Korach KS . (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 2: 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Brodie SG, Xu X, Qiao W, Li WM, Cao L, Deng CX . (2001). Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20: 7514–7523.

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Lazard Z, Zhang P, Hopp TA, Lee AV . (2003). Progesterone crosstalks with insulin-like growth factor signaling in breast cancer cells via induction of insulin receptor substrate-2. Oncogene 22: 6937–6941.

    Article  CAS  PubMed  Google Scholar 

  • Cullinane CA, Lubinski J, Neuhausen SL, Ghadirian P, Lynch HT, Isaacs C et al. (2005). Effect of pregnancy as a risk factor for breast cancer in BRCA1/BRCA2 mutation carriers. Int J Cancer 117: 988–991.

    Article  CAS  PubMed  Google Scholar 

  • Deans AJ, Simpson KJ, Trivett MK, Brown MA, McArthur GA . (2004). Brca1 inactivation induces p27(Kip1)-dependent cell cycle arrest and delayed development in the mouse mammary gland. Oncogene 23: 6136–6145.

    Article  CAS  PubMed  Google Scholar 

  • Decensi A, Serrano D, Bonanni B, Cazzaniga M, Guerrieri-Gonzaga A . (2003). Breast cancer prevention trials using retinoids. J Mammary Gland Biol Neoplasia 8: 19–30.

    Article  PubMed  Google Scholar 

  • Dembinski T, Shiu R . (1987). Growth factors in mammary gland development and function. In: Neville, MC and Daniel CW (eds.) The Mammary Gland: Development, Regulation, and Function. Plenum Pub Corp: USA, pp 355–381.

    Chapter  Google Scholar 

  • El Etreby MF, Liang Y, Wrenn RW, Schoenlein PV . (1998). Additive effect of mifepristone and tamoxifen on apoptotic pathways in MCF-7 human breast cancer cells. Breast Cancer Res Treat 51: 149–168.

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA et al. (2002). p300 modulates the BRCA1 inhibition of estrogen receptor activity. Cancer Res 62: 141–151.

    CAS  Google Scholar 

  • Fendrick JL, Raafat AM, Haslam SZ . (1998). Mammary gland growth and development from the postnatal period to postmenopause: ovarian steroid receptor ontogeny and regulation in the mouse. J Mammary Gland Biol Neoplasia 3: 7–22.

    Article  CAS  PubMed  Google Scholar 

  • Foulkes WD, Metcalfe K, Sun P, Hanna WM, Lynch HT, Ghadirian P et al. (2004). Estrogen receptor status in BRCA1- and BRCA2-related breast cancer: the influence of age, grade, and histological type. Clin Cancer Res 10: 2029–2034.

    Article  CAS  PubMed  Google Scholar 

  • Frech MS, Halama ED, Tilli MT, Singh B, Gunther EJ, Chodosh LA et al. (2005a). Deregulated estrogen receptor alpha expression in mammary epithelial cells of transgenic mice results in the development of ductal carcinoma in situ. Cancer Res 65: 681–685.

    CAS  PubMed  Google Scholar 

  • Frech MS, Jones LP, Furth PA . (2005b). Validation of transgenic models of breast cancer: ductal carcinoma in situ (DCIS) and Brca1 mutation-related breast cancer. Breast Cancer Online 8. http://www.bco.org/article.asp?article=273&issue=78.

  • Furuta S, Jiang X, Gu B, Cheng E, Chen PL, Lee WH . (2005). Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc Natl Acad Sci USA 102: 9176–9181.

    Article  CAS  PubMed  Google Scholar 

  • Furuta S, Wang JM, Wei S, Jeng YM, Jiang X, Gu B et al. (2006). Removal of BRCA1/CtIP/ZBRK1 repressor complex on ANG1 promoter leads to accelerated mammary tumor growth contributed by prominent vasculature. Cancer Cell 10: 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg E, Vonderhaar B . (2000) In: Ip M and Asch B (eds.) Methods in Mammary Gland Biology and Breast Cancer Research. Kluwer Academic/Plenum Publishers: NYC, pp 147–154.

    Book  Google Scholar 

  • Grimm SL, Rosen JM . (2006). Stop! In the name of transforming growth factor-beta: keeping estrogen receptor-alpha-positive mammary epithelial cells from proliferating. Breast Cancer Res 8: 106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gudmundsdottir K, Ashworth A . (2006). The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25: 5864–5874.

    Article  CAS  PubMed  Google Scholar 

  • Heppner GH, Miller FR, Shekhar PM . (2000). Nontransgenic models of breast cancer. Breast Cancer Res 2: 331–334.

    Article  CAS  PubMed  Google Scholar 

  • Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. (2007). Identification of conserved gene expression features of murine breast carcinoma models relative to each other and to human cancers. Genome Biol 8: R76 (Epub ahead of print).

    Article  Google Scholar 

  • Jones LP, Li M, Halama ED, Ma Y, Lubet R, Grubbs CJ et al. (2005). Promotion of mammary cancer development by temoxifen in a mouse model of Brca1-mutation-related breast cancer. Oncogene 24: 3554–3562.

    Article  CAS  PubMed  Google Scholar 

  • Krzysiek J, Milewicz T, Augustowska K, Sztefko K, Rys J, Zubel A et al. (2003). The impact of progesterone on simultaneous, local secretion of IGFBP-3 and IGF-I [IGFBP-3/IGF-I index] by human malignant and non-malignant breast explants depends on tissue steroid receptor phenotype. Ginekol Pol 74: 767–774.

    PubMed  Google Scholar 

  • Liang Y, Hou M, Kallab AM, Barrett JT, El Etreby F, Schoenlein PV . (2003). Induction of antiproliferation and apoptosis in estrogen receptor negative MDA-231 human breast cancer cells by mifepristone and 4-hydroxytamoxifen combination therapy: a role for TGFbeta. Int J Oncol 23: 369–380.

    CAS  PubMed  Google Scholar 

  • Ma Y, Katiyar P, Jones LP, Fan S, Zhang Y, Furth PA et al. (2006). The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol Endocrinol 20: 14–34.

    Article  CAS  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Milewicz T, Gregoraszczuk EL, Sztefko K, Augustowska K, Krzysiek J, Rys J . (2005). Lack of synergy between estrogen and progesterone on local IGF-I, IGFBP-3 and IGFBP-2 secretion by both hormone-dependent and hormone-independent breast cancer explants in vitro. Effect of tamoxifen and mifepristone (RU 486). Growth Horm IGF Res 15: 140–147.

    Article  CAS  PubMed  Google Scholar 

  • Poole AJ, Li Y, Kim Y, Lin S-CJ, Lee W-H, Lee EYHP . (2006). Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314: 1467–1470.

    Article  CAS  PubMed  Google Scholar 

  • Raafat AM, Hofseth LJ, Li S, Bennett JM, Haslam SZ . (1999). A mouse model to study the effects of hormone replacement therapy on normal mammary gland during menopause: enhanced proliferative response to estrogen in late postmenopausal mice. Endocrinology 140: 2570–2580.

    Article  CAS  PubMed  Google Scholar 

  • Razandi M, Pedram A, Rosen EM, Levin ER . (2004). BRCA1 inhibits membrane estrogen and growth factor receptor signaling to cell proliferation in breast cancer. Mol Cell Biol 24: 5900–5913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebbeck TR, Lynch HT, Neuhausen SL, Narod SA, Van't Veer L, Garber JE et al. (2002). Prophylactic oophorectomy in BRCA1 and BRCA2 mutation carriers. N Engl J Med 346: 1616–1622.

    Article  Google Scholar 

  • Ruan W, Monaco ME, Kleinberg DL . (2005). Progesterone stimulates mammary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-I action. Endocrinology 146: 1170–1178.

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Coumoul X, Cao L, Wang RH, Xiao C, Xu X et al. (2006). Absence of the full-length breast cancer-associated gene-1 leads to increased expression of insulin-like growth factor signaling axis members. Cancer Res 66: 7151–7157.

    Article  CAS  PubMed  Google Scholar 

  • Silberstein GB . (2001). Postnatal mammary gland morphogenesis. Microsc Res Tech 52: 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Tilli MT, Frech MS, Steed ME, Hruska KS, Johnson MD, Flaws JA et al. (2003). Introduction of estrogen receptor-alpha into the tTA/TAg conditional mouse model precipitates the development of estrogen-responsive mammary adenocarcinoma. Am J Pathol 163: 1713–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassen L, Wegrzyn W, Klein-Hitpass L . (1999). Human insulin receptor substrate-2 (IRS-2) is a primary progesterone response gene. Mol Endocrinol 13: 485–494.

    Article  CAS  PubMed  Google Scholar 

  • Wagner KU, McAllister K, Ward T, Davis B, Wiseman R, Hennighausen L . (2001). Cre-mediated gene deletion in the mammary gland. Transgenic Res 10: 545–553.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T et al. (1999). Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22: 37–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH NCI MAO/RFP NO1-CN-05024 (PAF and LPJ), RO1CA08000 (EMR, PAF and KT), 2T32CA09686-08 (LPJ) and the Susan G Komen Breast Cancer Foundation PDF040244 (LPJ and SA) and PDF0503642 (MTT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P A Furth.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, L., Tilli, M., Assefnia, S. et al. Activation of estrogen signaling pathways collaborates with loss of Brca1 to promote development of ERα-negative and ERα-positive mammary preneoplasia and cancer. Oncogene 27, 794–802 (2008). https://doi.org/10.1038/sj.onc.1210674

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210674

Keywords

This article is cited by

Search

Quick links