Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells

Abstract

Nuclear factor-kappa B (NF-κB) inhibits cell death through suppression of the caspase cascade, the c-Jun N-terminal kinase (JNK) pathway, and reactive oxygen species (ROS) accumulation. To suppress this antiapoptotic function of NF-κB might be a promising strategy to increase susceptibility of tumor cells to stress-induced cell death. We have recently shown that tumor necrosis factor (TNF)α induces caspase-dependent and -independent JNK activation and ROS accumulation in cellular FLICE-inhibitory protein (c-Flip)−/− murine embryonic fibroblasts (MEFs). To apply this observation to tumor therapy, we knocked down c-FLIP by RNA interference in various tumor cells. Consistent with the results using c-Flip−/− MEFs, we found that TNFα stimulation induced caspase-dependent prolonged JNK activation and ROS accumulation, followed by apoptotic and necrotic cell death in various tumor cells. Furthermore, TNFα and Fas induced the cleavage of mitogen-activated protein kinase/ERK kinase kinase (MEKK)1, resulting in generation of a constitutive active form of MEKK1 leading to JNK activation in c-FLIP knockdown cells. Given that ROS accumulation and necrotic cell death enhance inflammation followed by compensatory proliferation of tumor cells, selective suppression of caspase-dependent ROS accumulation will be an alternative strategy to protect cells from ROS-dependent DNA damage and compensatory tumor progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Balkwill F, Coussens LM . (2004). Cancer: an inflammatory link. Nature 431: 405–406.

    Article  CAS  Google Scholar 

  • Barkett M, Gilmore TD . (1999). Control of apoptosis by Rel/NF-κB transcription factors. Oncogene 18: 6910–6924.

    Article  CAS  Google Scholar 

  • Budd RC, Yeh WC, Tschopp J . (2006). c-FLIP regulation of lymphocyte activation and development. Nat Rev Immunol 6: 196–204.

    Article  CAS  Google Scholar 

  • Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K et al. (2006). The E3 Ubiquitin Ligase Itch Couples JNK Activation to TNFα-induced Cell Death by Inducing c-FLIP(L) Turnover. Cell 124: 601–613.

    Article  CAS  Google Scholar 

  • Deng Y, Ren X, Yang L, Lin Y, Wu X . (2003). A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 115: 61–70.

    Article  CAS  Google Scholar 

  • Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A . (1999). The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190: 1025–1032.

    Article  CAS  Google Scholar 

  • Edinger AL, Thompson CB . (2004). Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663–669.

    Article  CAS  Google Scholar 

  • Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C et al. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122: 221–233.

    Article  CAS  Google Scholar 

  • Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M . (2005). Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120: 649–661.

    Article  CAS  Google Scholar 

  • Karin M, Lin A . (2002). NF-κB at the crossroads of life and death. Nat Immunol 3: 221–227.

    Article  CAS  Google Scholar 

  • Lee KK, Murakawa M, Nishida E, Tsubuki S, Kawashima S, Sakamaki K et al. (1998). Proteolytic activation of MST/Krs, STE20-related protein kinase, by caspase during apoptosis. Oncogene 16: 3029–3037.

    Article  CAS  Google Scholar 

  • Levine B, Klionsky DJ . (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463–477.

    Article  CAS  Google Scholar 

  • Levine B, Yuan J . (2005). Autophagy in cell death: an innocent convict? J Clin Invest 115: 2679–2688.

    Article  CAS  Google Scholar 

  • Maeda S, Kamata H, Luo JL, Leffert H, Karin M . (2005). IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121: 977–990.

    Article  CAS  Google Scholar 

  • Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R . (1999). Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 190: 1033–1038.

    Article  CAS  Google Scholar 

  • Micheau O, Tschopp J . (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114: 181–190.

    Article  CAS  Google Scholar 

  • Nakajima A, Komazawa-Sakon S, Takekawa M, Sasazuki T, Yeh WC, Yagita H et al. (2006). An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J 25: 5549–5559.

    Article  CAS  Google Scholar 

  • Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K . (2006). Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ 13: 730–737.

    Article  CAS  Google Scholar 

  • Nakayama M, Ishidoh K, Kayagaki N, Kojima Y, Yamaguchi N, Nakano H et al. (2002). Multiple pathways of TWEAK-induced cell death. J Immunol 168: 734–743.

    Article  CAS  Google Scholar 

  • Ohsumi Y . (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2: 211–216.

    Article  CAS  Google Scholar 

  • Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K et al. (2004). Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119: 529–542.

    Article  CAS  Google Scholar 

  • Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N et al. (2004). Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117: 773–786.

    Article  CAS  Google Scholar 

  • Rudel T, Zenke FT, Chuang TH, Bokoch GM . (1998). p21-activated kinase (PAK) is required for Fas-induced JNK activation in Jurkat cells. J Immunol 160: 7–11.

    CAS  PubMed  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y et al. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK)1. EMBO J 17: 2596–2606.

    Article  CAS  Google Scholar 

  • Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y et al. (2003). NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22: 3898–3909.

    Article  CAS  Google Scholar 

  • Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K et al. (2001). ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO R 2: 222–228.

    Article  CAS  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874.

    Article  CAS  Google Scholar 

  • Vakkila J, Lotze MT . (2004). Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4: 641–648.

    Article  CAS  Google Scholar 

  • Ventura JJ, Cogswell P, Flavell RA, Baldwin Jr AS, Davis RJ . (2004). JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18: 2905–2915.

    Article  CAS  Google Scholar 

  • Widmann C, Gerwins P, Johnson NL, Jarpe MB, Johnson GL . (1998). MEK kinase 1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis. Mol Cell Biol 18: 2416–2429.

    Article  CAS  Google Scholar 

  • Yeh WC, Itie A, Elia AJ, Ng M, Shu HB, Wakeham A et al. (2000). Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12: 633–642.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y Gotoh, H Nishina, M Takekawa and T Ueno for providing reagents and helpful discussion. This work was supported in part by Grants-in-Aid for 21st Century COE Research and Scientific Research (B) from Japan Society for the Promotion of Science, Japan, a Grant from Human Frontier Science Program (HFSP), and grants from the Takeda Science Foundation, the Tokyo Biochemical Research Foundation, and NOVARTIS Foundation (Japan) for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Nakano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, A., Kojima, Y., Nakayama, M. et al. Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells. Oncogene 27, 76–84 (2008). https://doi.org/10.1038/sj.onc.1210624

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210624

Keywords

This article is cited by

Search

Quick links