Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Wilms' tumor protein 1: an early target of progestin regulation in T-47D breast cancer cells that modulates proliferation and differentiation

Abstract

Progesterone regulates the proliferation and differentiation of normal mammary epithelium. In breast cancer cells, progesterone and its synthetic analogs, progestins, induce long-term growth inhibition and differentiation. However, the mechanisms responsible are not fully understood. When T-47D breast cancer cells were treated with the synthetic progestin ORG 2058 (16α-ethoxy-21-hydroxy-19-norpregn-4-en-3,20-dione), all isoforms of Wilms' tumor protein 1 (Wt1) mRNA and protein were rapidly downregulated. We reasoned that the decrease in Wt1 levels may contribute to the long-term antiproliferative and differentiative effects of progestins as proliferation and differentiation are known end points of Wt1 action. Consistent with this idea, Wt1 small interfering RNA led to a decrease in S phase and cyclin D1 levels, and increased Oil-Red-O staining, indicating increased lipogenesis. Conversely, overexpression of Wt1 attenuated the decrease in S phase induced by ORG 2058 at 48–96 h. This was accompanied by the sustained expression of cyclin D1 despite progestin treatment, and increased levels of retinoblastoma (Rb) phosphorylation at sites targeted by cyclin D1-Cdk4 (Ser249/Thr252). Wt1 overexpression also attenuated the ORG 2058-mediated increase in fatty acid synthase levels and reduced lipogenesis. Thus, Wt1 downregulation was sufficient to mimic the effects of progestin and was necessary for complete progestin-mediated proliferative arrest and subsequent differentiation. Furthermore, Wt1 overexpression modulated the effects of progestins but not anti-estrogens or androgens. These results indicate that Wt1 is an important early target of progestins that regulates both proliferation and differentiation in breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anthony FW, Mukhtar DD, Pickett MA, Cameron IT . (2003). Progesterone up-regulates WT1 mRNA and protein, and alters the relative expression of WT1 transcripts in cultured endometrial stromal cells. J Soc Gynecol Investig 10: 509–516.

    CAS  PubMed  Google Scholar 

  • Baudry D, Hamelin M, Cabanis M-O, Fournet J-C, Tournade M-F, Sarnacki S et al. (2000). WT1 splicing alterations in Wilms' tumors. Clin Cancer Res 6: 3957–3965.

    CAS  PubMed  Google Scholar 

  • Bray JD, Jelinsky S, Ghatge R, Bray JA, Tunkey C, Saraf K et al. (2005). Quantitative analysis of gene regulation by seven clinically relevant progestins suggests a highly similar mechanism of action through progesterone receptors in T47D breast cancer cells. J Steroid Biochem Mol Biol 97: 328–341.

    Article  CAS  PubMed  Google Scholar 

  • Burwell EA, McCarty GP, Simpson LA, Thompson KA, Loeb DM . (2007). Isoforms of Wilms' tumor suppressor gene (WT1) have distinct effects on mammary epithelial cells. Oncogene 26: 3423–3430.

    Article  CAS  PubMed  Google Scholar 

  • Castro-Rivera E, Samudio I, Safe S, Yan YX, Nakagawa H, Lee MH et al. (2001). Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J Biol Chem 276: 30853–30861.

    Article  CAS  PubMed  Google Scholar 

  • Chambon M, Rochefort H, Vial HJ, Chalbos D . (1989). Progestins and androgens stimulate lipid accumulation in T47D breast cancer cells via their own receptors. J Steroid Biochem 33: 915–922.

    Article  CAS  PubMed  Google Scholar 

  • Englert C, Maheswaran S, Garvin AJ, Kreidberg J, Haber DA . (1997). Induction of p21 by the Wilms' tumor suppressor gene WT1. Cancer Res 57: 1429–1434.

    CAS  PubMed  Google Scholar 

  • Fu M, Wang C, Li Z, Sakamaki T, Pestell RG . (2004). Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145: 5439–5447.

    Article  CAS  PubMed  Google Scholar 

  • Graham JD, Yager ML, Hill HD, Byth K, O'Neill GM, Clarke CL . (2005). Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol Endocrinol 19: 2713–2735.

    Article  CAS  PubMed  Google Scholar 

  • Groshong SD, Owen GI, Grimison B, Schauer IE, Todd MC, Langan TA et al. (1997). Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, p21 and p27Kip1. Mol Endocrinol 11: 1593–1607.

    Article  CAS  PubMed  Google Scholar 

  • Haber DA, Sohn RL, Buckler AJ, Pelletier J, Call KM, Housman DE . (1991). Alternative splicing and genomic structure of the Wilms' tumor gene WT1. Proc Natl Acad Sci USA 88: 9618–9622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, San-Marina S, Liu J, Minden MD . (2004). Transcriptional activation of c-myc proto-oncogene by WT1 protein. Oncogene 23: 6933–6941.

    Article  CAS  PubMed  Google Scholar 

  • Horton JD, Goldstein JL, Brown MS . (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui R, Finney GL, Carroll JS, Lee CS, Musgrove EA, Sutherland RL . (2002). Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Res 62: 6916–6923.

    CAS  PubMed  Google Scholar 

  • Jomgeow T, Oji Y, Tsuji N, Ikeda Y, Ito K, Tsuda A et al. (2006). Wilms' tumor gene WT1 17AA(-)/KTS(-) isoform induces morphological changes and promotes cell migration and invasion in vitro. Cancer Sci 97: 259–270.

    Article  CAS  PubMed  Google Scholar 

  • Kester HA, van der Leede B-jM, van der Saag PT, van der Burg B . (1997). Novel progesterone target genes identified by an improved differential display technique suggest that progestin-induced growth inhibition of breast cancer cells coincides with enhancement of differentiation. J Biol Chem 272: 16637–16643.

    Article  CAS  PubMed  Google Scholar 

  • Kudoh T, Ishidate T, Moriyama M, Toyoshima K, Akiyama T . (1995). G1 phase arrest induced by Wilms tumor protein WT1 is abrogated by cyclin/CDK complexes. Proc Natl Acad Sci USA 92: 4517–4521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SB, Haber DA . (2001). Wilms tumor and the WT1 gene. Exp Cell Res 264: 74–99.

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Moffett P, Pelletier J . (1999). The Wilms' tumor suppressor gene (wt1) product represses different functional classes of transcriptional activation domains. Nucleic Acids Res 27: 2889–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeb DM, Evron E, Patel CB, Sharma PM, Niranjan B, Buluwela L et al. (2001). Wilms' tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 61: 921–925.

    CAS  PubMed  Google Scholar 

  • Loeb DM, Korz D, Katsnelson M, Burwell EA, Friedman AD, Sukumar S . (2002). Cyclin E is a target of WT1 transcriptional repression. J Biol Chem 277: 19627–19632.

    Article  CAS  PubMed  Google Scholar 

  • Loeb DM, Sukumar S . (2002). The role of WT1 in oncogenesis: tumor suppressor or oncogene? Int J Hematol 76: 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Martel PM, Bingham CM, McGraw CJ, Baker CL, Morganelli PM, Meng ML et al. (2006). S14 protein in breast cancer cells: direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Exp Cell Res 312: 278–288.

    CAS  PubMed  Google Scholar 

  • Miyoshi Y, Ando A, Egawa C, Taguchi T, Tamaki Y, Tamaki H et al. (2002). High expression of Wilms' tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res 8: 1167–1171.

    CAS  PubMed  Google Scholar 

  • Musgrove EA, Lee CSL, Buckley MF, Sutherland RL . (1994). Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 91: 8022–8026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musgrove EA, Hamilton JA, Lee CS, Sweeney KJ, Watts CK, Sutherland RL . (1993). Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 13: 3577–3587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musgrove EA, Hunter LJ, Lee CS, Swarbrick A, Hui R, Sutherland RL . (2001). Cyclin D1 overexpression induces progestin resistance in T-47D breast cancer cells despite p27(Kip1) association with cyclin E-Cdk2. J Biol Chem 276: 47675–47683.

    Article  CAS  PubMed  Google Scholar 

  • Musgrove EA, Lee CS, Sutherland RL . (1991). Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor alpha, epidermal growth factor receptor, c-fos, and c-myc genes. Mol Cell Biol 11: 5032–5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musgrove EA, Lilischkis R, Cornish AL, Lee CS, Setlur V, Seshadri R et al. (1995). Expression of the cyclin-dependent kinase inhibitors p16INK4, p15INK4B and p21WAF1/CIP1 in human breast cancer. Int J Cancer 63: 584–591.

    Article  CAS  PubMed  Google Scholar 

  • Musgrove EA, Swarbrick A, Lee CS, Cornish AL, Sutherland RL . (1998). Mechanisms of cyclin-dependent kinase inactivation by progestins. Mol Cell Biol 18: 1812–1825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsuka S, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T et al. (2006). Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol 19: 804–814.

    Article  CAS  PubMed  Google Scholar 

  • Oji Y, Ogawa H, Tamaki H, Oka Y, Tsuboi A, Kim EH et al. (1999). Expression of the Wilms' tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 90: 194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ormandy CJ, Clarke CL, Kelly PA, Sutherland RL . (1992). Androgen regulation of prolactin-receptor gene expression in MCF-7 and MDA-MB-453 human breast cancer cells. Int J Cancer 50: 777–782.

    Article  CAS  PubMed  Google Scholar 

  • Rae FK, Martinez G, Gillinder KR, Smith A, Shooter G, Forrest AR et al. (2004). Analysis of complementary expression profiles following WT1 induction versus repression reveals the cholesterol/fatty acid synthetic pathways as a possible major target of WT1. Oncogene 23: 3067–3079.

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Zacarías JL, Castro-Muñozledo F, Kuri-Harcuch W . (1992). Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil Red O. Histochemistry 97: 493–497.

    Article  PubMed  Google Scholar 

  • Reizner N, Maor S, Sarfstein R, Abramovitch S, Welshons WV, Curran EM et al. (2005). The WT1 Wilms' tumor suppressor gene product interacts with estrogen receptor-alpha and regulates IGF-I receptor gene transcription in breast cancer cells. J Mol Endocrinol 35: 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M et al. (2006). Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol 26: 5449–5469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharnhorst V, van der Eb AJ, Jochemsen AG . (2001). WT1 proteins: functions in growth and differentiation. Gene 273: 141–161.

    Article  CAS  PubMed  Google Scholar 

  • Siehl JM, Reinwald M, Heufelder K, Menssen HD, Keilholz U, Thiel E . (2004). Expression of Wilms' tumor gene 1 at different stages of acute myeloid leukemia and analysis of its major splice variants. Ann Hematol 83: 745–750.

    Article  PubMed  Google Scholar 

  • Silberstein GB, Dressler GR, Van Horn K . (2002). Expression of the PAX2 oncogene in human breast cancer and its role in progesterone-dependent mammary growth. Oncogene 21: 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  • Silberstein GB, Van Horn K, Strickland P, Roberts Jr CT, Daniel CW . (1997). Altered expression of the WT1 Wilms tumor suppressor gene in human breast cancer. Proc Natl Acad Sci USA 94: 8132–8137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland RL, Prall OW, Watts CK, Musgrove EA . (1998). Estrogen and progestin regulation of cell cycle progression. J Mammary Gland Biol Neoplasia 3: 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Swarbrick A, Lee CS, Sutherland RL, Musgrove EA . (2000). Cooperation of p27(Kip1) and p18(INK4c) in progestin-mediated cell cycle arrest in T-47D breast cancer cells. Mol Cell Biol 20: 2581–2591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney KJ, Swarbrick A, Sutherland RL, Musgrove EA . (1998). Lack of relationship between CDK activity and G1 cyclin expression in breast cancer cells. Oncogene 16: 2865–2878.

    Article  CAS  PubMed  Google Scholar 

  • Tuna M, Chavez-Reyes A, Tari AM . (2005). HER2/neu increases the expression of Wilms' tumor 1 (WT1) protein to stimulate S-phase proliferation and inhibit apoptosis in breast cancer cells. Oncogene 24: 1648–1652.

    Article  CAS  PubMed  Google Scholar 

  • Wagner K-D, Wagner N, Vidal VP, Schley G, Wilhelm D, Schedl A et al. (2002). The Wilms' tumor gene Wt1 is required for normal development of the retina. EMBO J 21: 1398–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner N, Wagner K-D, Hammes A, Kirschner KM, Vidal VP, Schedl A et al. (2005). A splice variant of the Wilms' tumour suppressor Wt1 is required for normal development of the olfactory system. Development 132: 1327–1336.

    Article  CAS  PubMed  Google Scholar 

  • Wagner N, Wagner K-D, Schley G, Coupland SE, Heimann H, Grantyn R et al. (2002). The Wilms' tumor suppressor Wt1 is associated with the differentiation of retinoblastoma cells. Cell Growth Differ 13: 297–305.

    CAS  PubMed  Google Scholar 

  • Watts CK, Brady A, Sarcevic B, deFazio A, Musgrove EA, Sutherland RL . (1995). Antiestrogen inhibition of cell cycle progression in breast cancer cells is associated with inhibition of cyclin-dependent kinase activity and decreased retinoblastoma protein phosphorylation. Mol Endocrinol 9: 1804–1813.

    CAS  PubMed  Google Scholar 

  • Writing Group for the Women's Health Initiative (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women's health initiative randomized controlled trial. JAMA 288: 321–333.

    Article  Google Scholar 

  • Zaia A, Fraizer GC, Piantanelli L, Saunders GF . (2001). Transcriptional regulation of the androgen signaling pathway by the Wilms' tumor suppressor gene WT1. Anticancer Res 21: 1–10.

    CAS  PubMed  Google Scholar 

  • Zapata-Benavides P, Tuna M, Lopez-Berestein G, Tari AM . (2002). Downregulation of Wilms' tumor 1 protein inhibits breast cancer proliferation. Biochem Biophys Res Commun 295: 784–790.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mia Åkerfeldt, Ann Cornish, Lisa-Jane Hunter and Dr Alex Swarbrick for their contributions to some early experiments, and Gillian Lehrbach for providing the cell line RNA and protein. This research was supported by The National Health and Medical Research Council of Australia, the Cancer Institute NSW, the Australian Cancer Research Foundation (ACRF Unit for the Molecular Genetics of Cancer), the RT Hall Trust and The Cancer Council, NSW. CEC is a Cancer Institute NSW Scholar and EAM is a Cancer Institute NSW Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E A Musgrove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldon, C., Lee, C., Sutherland, R. et al. Wilms' tumor protein 1: an early target of progestin regulation in T-47D breast cancer cells that modulates proliferation and differentiation. Oncogene 27, 126–138 (2008). https://doi.org/10.1038/sj.onc.1210622

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210622

Keywords

This article is cited by

Search

Quick links