Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Histone deacetylases and cancer

Abstract

Histone deacetylases (HDACs) regulate the expression and activity of numerous proteins involved in both cancer initiation and cancer progression. By removal of acetyl groups from histones, HDACs create a non-permissive chromatin conformation that prevents the transcription of genes that encode proteins involved in tumorigenesis. In addition to histones, HDACs bind to and deacetylate a variety of other protein targets including transcription factors and other abundant cellular proteins implicated in control of cell growth, differentiation and apoptosis. This review provides a comprehensive examination of the transcriptional and post-translational mechanisms by which HDACs alter the expression and function of cancer-associated proteins and examines the general impact of HDAC activity in cancer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M et al. (2003). GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23: 8429–8439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altenburg BC, Via DP, Steiner SH . (1976). Modification of the phenotype of murine sarcoma virus-transformed cells by sodium butyrate. Effects on morphology and cytoskeletal elements. Exp Cell Res 102: 223–231.

    CAS  PubMed  Google Scholar 

  • Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N et al. (2001). ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 21: 6470–6483.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ammanamanchi S, Brattain MG . (2004). Restoration of transforming growth factor-beta signaling through receptor RI induction by histone deacetylase activity inhibition in breast cancer cells. J Biol Chem 279: 32620–32625.

    CAS  PubMed  Google Scholar 

  • Annicotte JS, Iankova I, Miard S, Fritz V, Sarruf D, Abella A et al. (2006). Peroxisome proliferator-activated receptor gamma regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol Cell Biol 26: 7561–7574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Augenlicht L, Shi L, Mariadason J, Laboisse C, Velcich A . (2003). Repression of MUC2 gene expression by butyrate, a physiological regulator of intestinal cell maturation. Oncogene 22: 4983–4992.

    CAS  PubMed  Google Scholar 

  • Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F et al. (2005). Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280: 26729–26734.

    CAS  PubMed  Google Scholar 

  • Basseres DS, Baldwin AS . (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25: 6817–6830.

    CAS  PubMed  Google Scholar 

  • Bereshchenko OR, Gu W, Dalla-Favera R . (2002). Acetylation inactivates the transcriptional repressor BCL6. Nat Genet 32: 606–613.

    CAS  PubMed  Google Scholar 

  • Boffa LC, Vidali G, Mann RS, Allfrey VG . (1978). Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J Biol Chem 253: 3364–3366.

    CAS  PubMed  Google Scholar 

  • Boyes J, Byfield P, Nakatani Y, Ogryzko V . (1998). Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396: 594–598.

    CAS  PubMed  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T . (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601.

    CAS  PubMed  Google Scholar 

  • Cabrero JR, Serrador JM, Barreiro O, Mittelbrunn M, Naranjo-Suarez S, Martin-Cofreces N et al. (2006). Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. Mol Biol Cell 17: 3435–3445.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell KJ, Rocha S, Perkins ND . (2004). Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B. Mol Cell 13: 853–865.

    CAS  PubMed  Google Scholar 

  • Caslini C, Capo-chichi CD, Roland IH, Nicolas E, Yeung AT, Xu XX . (2006). Histone modifications silence the GATA transcription factor genes in ovarian cancer. Oncogene 25: 5446–5461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T et al. (2006). Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol 26: 6859–6869.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Edelstein LC, Gelinas C . (2000). The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20: 2687–2695.

    PubMed  PubMed Central  Google Scholar 

  • Chen L, Fischle W, Verdin E, Greene WC . (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293: 1653–1657.

    CAS  Google Scholar 

  • Chen LF, Mu Y, Greene WC . (2002). Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 21: 6539–6548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevallier N, Corcoran CM, Lennon C, Hyjek E, Chadburn A, Bardwell VJ et al. (2004). ETO protein of t(8;21) AML is a corepressor for BCL6 B-cell lymphoma oncoprotein. Blood 103: 1454–1463.

    CAS  PubMed  Google Scholar 

  • Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C et al. (2004a). Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13: 627–638.

    CAS  PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B et al. (2004b). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305: 390–392.

    CAS  PubMed  Google Scholar 

  • Crazzolara R, Johrer K, Johnstone RW, Greil R, Kofler R, Meister B et al. (2002). Histone deacetylase inhibitors potently repress CXCR4 chemokine receptor expression and function in acute lymphoblastic leukaemia. Br J Haematol 119: 965–969.

    CAS  PubMed  Google Scholar 

  • Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N et al. (2002). Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21: 427–436.

    CAS  PubMed  Google Scholar 

  • Duan H, Heckman CA, Boxer LM . (2005). Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 25: 1608–1619.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durst KL, Lutterbach B, Kummalue T, Friedman AD, Hiebert SW . (2003). The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol Cell Biol 23: 607–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Lin T, Uranishi H, Gu W, Xu Y . (2005). Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol 25: 5389–5395.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Follows GA, Tagoh H, Lefevre P, Hodge D, Morgan GJ, Bonifer C . (2003). Epigenetic consequences of AML1-ETO action at the human c-FMS locus. EMBO J 22: 2798–2809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391–400.

    CAS  PubMed  Google Scholar 

  • Ginsburg E, Salomon D, Sreevalsan T, Freese E . (1973). Growth inhibition and morphological changes caused by lipophilic acids in mammalian cells. Proc Natl Acad Sci USA 70: 2457–2461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E . (2005). Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23.

    CAS  PubMed  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV . (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338: 17–31.

    CAS  PubMed  Google Scholar 

  • Gu W, Roeder RG . (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    CAS  PubMed  Google Scholar 

  • Guenther MG, Barak O, Lazar MA . (2001). The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21: 6091–6101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guidez F, Howell L, Isalan M, Cebrat M, Alani RM, Ivins S et al. (2005). Histone acetyltransferase activity of p300 is required for transcriptional repression by the promyelocytic leukemia zinc finger protein. Mol Cell Biol 25: 5552–5566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN . (2004). Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59: 177–189.

    CAS  PubMed  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE . (1997). Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341–347.

    CAS  PubMed  Google Scholar 

  • Hayakawa F, Towatari M, Ozawa Y, Tomita A, Privalsky ML, Saito H . (2004). Functional regulation of GATA-2 by acetylation. J Leukoc Biol 75: 529–540.

    CAS  PubMed  Google Scholar 

  • Hellebrekers DM, Castermans K, Vire E, Dings RP, Hoebers NT, Mayo KH et al. (2006). Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res 66: 10770–10777.

    CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez A, Ray P, Litos G, Ciro M, Ottolenghi S, Beug H et al. (2006). Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J 25: 3264–3274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho WC, Dickson KM, Barker PA . (2005). Nuclear factor-kappaB induced by doxorubicin is deficient in phosphorylation and acetylation and represses nuclear factor-kappaB-dependent transcription in cancer cells. Cancer Res 65: 4273–4281.

    CAS  PubMed  Google Scholar 

  • Hoberg JE, Popko AE, Ramsey CS, Mayo MW . (2006). IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 26: 457–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hrzenjak A, Moinfar F, Kremser ML, Strohmeier B, Staber PB, Zatloukal K et al. (2006). Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol Cancer Ther 5: 2203–2210.

    CAS  PubMed  Google Scholar 

  • Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M et al. (2005). Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ 12: 395–404.

    CAS  PubMed  Google Scholar 

  • Huang X, Guo B . (2006). Adenomatous polyposis coli determines sensitivity to histone deacetylase inhibitor-induced apoptosis in colon cancer cells. Cancer Res 66: 9245–9251.

    CAS  PubMed  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417: 455–458.

    CAS  PubMed  Google Scholar 

  • Hung HL, Lau J, Kim AY, Weiss MJ, Blobel GA . (1999). CREB-binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol Cell Biol 19: 3496–3505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A et al. (2007). Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26: 500–508.

    CAS  PubMed  Google Scholar 

  • Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al. (2002). MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21: 6236–6245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    CAS  PubMed  Google Scholar 

  • Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ et al. (2004). Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem 279: 29409–29417.

    CAS  PubMed  Google Scholar 

  • Kiernan R, Bres V, Ng RW, Coudart MP, El Messaoudi S, Sardet C et al. (2003). Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 278: 2758–2766.

    CAS  PubMed  Google Scholar 

  • Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW et al. (2001). Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7: 437–443.

    PubMed  Google Scholar 

  • Kim SH, Ahn S, Han JW, Lee HW, Lee HY, Lee YW et al. (2004). Apicidin is a histone deacetylase inhibitor with anti-invasive and anti-angiogenic potentials. Biochem Biophys Res Commun 315: 964–970.

    CAS  PubMed  Google Scholar 

  • Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A et al. (2006). Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173: 533–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T . (2000). Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19: 1176–1179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV et al. (2005). HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18: 601–607.

    CAS  PubMed  Google Scholar 

  • Kramer OH, Baus D, Knauer SK, Stein S, Jager E, Stauber RH et al. (2006). Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 20: 473–485.

    PubMed  PubMed Central  Google Scholar 

  • Krummel KA, Lee CJ, Toledo F, Wahl GM . (2005). The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 102: 10188–10193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G et al. (2002). Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21: 2672–2681.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN . (1997). Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89: 349–356.

    CAS  PubMed  Google Scholar 

  • Lamonica JM, Vakoc CR, Blobel GA . (2006). Acetylation of GATA-1 is required for chromatin occupancy. Blood 108: 3736–3738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S . (2002). Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J Biol Chem 277: 22045–22052.

    CAS  PubMed  Google Scholar 

  • Linggi B, Muller-Tidow C, van de Locht L, Hu M, Nip J, Serve H et al. (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 8: 743–750.

    CAS  PubMed  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD et al. (1999). p53 Sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W . (2004). Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101: 2259–2264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137–148.

    CAS  PubMed  Google Scholar 

  • Luo RX, Postigo AA, Dean DC . (1998). Rb interacts with histone deacetylase to repress transcription. Cell 92: 463–473.

    CAS  PubMed  Google Scholar 

  • Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP et al. (1998). Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–605.

    CAS  PubMed  Google Scholar 

  • Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A et al. (2002). Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30: 329–334.

    PubMed  Google Scholar 

  • Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D et al. (2002). In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21: 6820–6831.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGarry LC, Winnie JN, Ozanne BW . (2004). Invasion of v-Fos(FBR)-transformed cells is dependent upon histone deacetylase activity and suppression of histone deacetylase regulated genes. Oncogene 23: 5284–5292.

    CAS  PubMed  Google Scholar 

  • Melnick AM, Westendorf JJ, Polinger A, Carlile GW, Arai S, Ball HJ et al. (2000). The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol 20: 2075–2086.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelis M, Michaelis UR, Fleming I, Suhan T, Cinatl J, Blaheta RA et al. (2004). Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol 65: 520–527.

    CAS  PubMed  Google Scholar 

  • Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL et al. (2005). Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 11: 4912–4922.

    CAS  PubMed  Google Scholar 

  • Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH . (2006). Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20: 506–508.

    CAS  PubMed  Google Scholar 

  • Nadiminty N, Lou W, Lee SO, Lin X, Trump DL, Gao AC . (2006). Stat3 activation of NF-{kappa}B p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci USA 103: 7264–7269.

    CAS  PubMed  PubMed Central  Google Scholar 

  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E . (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11: 437–444.

    CAS  PubMed  Google Scholar 

  • Osada H, Tatematsu Y, Masuda A, Saito T, Sugiyama M, Yanagisawa K et al. (2001). Heterogeneous transforming growth factor (TGF)-beta unresponsiveness and loss of TGF-beta receptor type II expression caused by histone deacetylation in lung cancer cell lines. Cancer Res 61: 8331–8339.

    CAS  PubMed  Google Scholar 

  • Peinado H, Ballestar E, Esteller M, Cano A . (2004). Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24: 306–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rampalli S, Pavithra L, Bhatt A, Kundu TK, Chattopadhyay S . (2005). Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Mol Cell Biol 25: 8415–8429.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed-Inderbitzin E, Moreno-Miralles I, Vanden-Eynden SK, Xie J, Lutterbach B, Durst-Goodwin KL et al. (2006). RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription. Oncogene 25: 5777–5786.

    CAS  PubMed  Google Scholar 

  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA . (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97: 10014–10019.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M et al. (2006). A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 38: 566–569.

    CAS  PubMed  Google Scholar 

  • Roy S, Tenniswood M . (2007). Site-specific acetylation of p53 directs selective transcription complex assembly. J Biol Chem 282: 4765–4771.

    CAS  PubMed  Google Scholar 

  • Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S et al. (2005). Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 24: 4531–4539.

    CAS  PubMed  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. (1998). DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev 12: 2831–2841.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salto-Tellez M, Peh BK, Ito K, Tan SH, Chong PY, Han HC et al. (2006). RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene 25: 7646–7649.

    CAS  PubMed  Google Scholar 

  • Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani et al. (1999). Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 274: 34940–34947.

    CAS  PubMed  Google Scholar 

  • Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K et al. (2007). An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25: 151–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M et al. (2005). Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435: 1262–1266.

    CAS  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL . (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844–847.

    CAS  PubMed  Google Scholar 

  • Simonsson M, Kanduri M, Gronroos E, Heldin CH, Ericsson J . (2006). The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 281: 39870–39880.

    CAS  PubMed  Google Scholar 

  • Song J, Noh JH, Lee JH, Eun JW, Ahn YM, Kim SY et al. (2005). Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113: 264–268.

    CAS  PubMed  Google Scholar 

  • Subramanian C, Opipari AW, Bian X, Castle VP, Kwok RP . (2005). Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 102: 4842–4847.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS et al. (2006). Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W . (2006). Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24: 827–839.

    CAS  PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL . (1996). A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408–411.

    CAS  PubMed  Google Scholar 

  • Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW et al. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20: 1256–1261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159.

    CAS  PubMed  Google Scholar 

  • Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S et al. (2002). Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295: 1726–1729.

    CAS  PubMed  Google Scholar 

  • Wang R, Cherukuri P, Luo J . (2005). Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280: 11528–11534.

    CAS  PubMed  Google Scholar 

  • Wang YH, Tsay YG, Tan BC, Lo WY, Lee SC . (2003). Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem 278: 25568–25576.

    CAS  PubMed  Google Scholar 

  • Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A et al. (2003). Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22: 9176–9184.

    CAS  PubMed  Google Scholar 

  • Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK et al. (2000). The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci USA 97: 7202–7207.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB et al. (2002). Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol 22: 7982–7992.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whetstine JR, Ceron J, Ladd B, Dufourcq P, Reinke V, Shi Y . (2005). Regulation of tissue-specific and extracellular matrix-related genes by a class I histone deacetylase. Mol Cell 18: 483–490.

    CAS  PubMed  Google Scholar 

  • Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y et al. (2006). Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281: 13548–13558.

    CAS  PubMed  Google Scholar 

  • Yamada N, Hamada T, Goto M, Tsutsumida H, Higashi M, Nomoto M et al. (2006). MUC2 expression is regulated by histone H3 modification and DNA methylation in pancreatic cancer. Int J Cancer 119: 1850–1857.

    CAS  PubMed  Google Scholar 

  • Yamagata T, Mitani K, Oda H, Suzuki T, Honda H, Asai T et al. (2000). Acetylation of GATA-3 affects T-cell survival and homing to secondary lymphoid organs. EMBO J 19: 4676–4687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi Y, Kurokawa M, Imai Y, Izutsu K, Asai T, Ichikawa M et al. (2004). AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J Biol Chem 279: 15630–15638.

    CAS  PubMed  Google Scholar 

  • Yang G, Thompson MA, Brandt SJ, Hiebert SW . (2007). Histone deacetylase inhibitors induce the degradation of the t(8;21) fusion oncoprotein. Oncogene 26: 91–101.

    PubMed  Google Scholar 

  • Yang WM, Inouye C, Zeng Y, Bearss D, Seto E . (1996). Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA 93: 12845–12850.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23: 2369–2380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan ZL, Guan YJ, Chatterjee D, Chin YE . (2005). Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307: 269–273.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Gilquin B, Khochbin S, Matthias P . (2006). Two catalytic domains are required for protein deacetylation. J Biol Chem 281: 2401–2404.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S et al. (2003). HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22: 1168–1179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Lu S, Wu L, Chai G, Wang H, Chen Y et al. (2006). Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol 26: 2782–2790.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M . (2004). Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5: 455–463.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all investigators whose works were not cited in this article due to space limitations. Work in our laboratory is supported by grants from the National Institutes of Health and an endowment from the Kaul Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Seto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Glozak, M., Seto, E. Histone deacetylases and cancer. Oncogene 26, 5420–5432 (2007). https://doi.org/10.1038/sj.onc.1210610

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210610

Keywords

  • acetylation
  • deacetylation
  • cancer
  • HDAC
  • HDAC inhibitors

This article is cited by

Search

Quick links