Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours

Abstract

MDC1 and 53BP1 are critical components of the DNA damage response (DDR) machinery that protects genome integrity and guards against cancer, yet the tissue expression patterns and involvement of these two DDR adaptors/mediators in human tumours remain largely unknown. Here we optimized immunohistochemical analyses of human 53BP1 and MDC1 proteins in situ and identified their virtually ubiquitous expression, both in proliferating and quiescent, differentiated tissues. Focus formation by 53BP1 and/or MDC1 in human spermatogenesis and subsets of breast and lung carcinomas indicated physiological and ‘pathological’ activation of the DDR, respectively. Furthermore, aberrant reduction or lack of either protein in significant proportions of carcinomas supported the candidacy of 53BP1 and MDC1 for tumour suppressors. Contrary to carcinomas, almost no activation or loss of MDC1 or 53BP1 were found among testicular germ-cell tumours (TGCTs), a tumour type with unique biology and exceptionally low incidence of p53 mutations. Such concomitant presence (in carcinomas) or absence (in TGCTs) of DDR activation and DDR aberrations supports the roles of MDC1 and 53BP1 within the ATM/ATR-regulated checkpoint network which, when activated, provides an early anti-cancer barrier the pressure of which selects for DDR defects such as p53 mutations or loss of 53BP1/MDC1 during cancer progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Albanell J, Bosl GJ, Reuter VE, Engelhardt M, Moore MA, Dmitrovsky E . (1999). Telomerase activity in germ cell cancers and mature teratomas. J Natl Cancer Inst 91: 1321–1326.

    Article  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2004). Initiating cellular stress responses. Cell 118: 9–17.

    Article  CAS  Google Scholar 

  • Bartek J, Lukas J . (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3: 421–429.

    Article  CAS  Google Scholar 

  • Bartek J, Lukas J . (2007). DNA damage checkpoints: from initiation to recovery or adaptation. Current Opin Cell Biol 19: 1–8.

    Article  Google Scholar 

  • Bartek J, Lukas C, Lukas J . (2004). Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5: 792–804.

    Article  CAS  Google Scholar 

  • Bartek J, Mailand N . (2006). TOPping up ATR activity. Cell 124: 888–890.

    Article  CAS  Google Scholar 

  • Bartkova J, Bakkenist CJ, Rajpert-De Meyts E, Skakkebæk NE, Sehested M, Lukas J et al. (2005a). ATM activation in normal human tissues and testicular cancer. Cell Cycle 4: 838–845.

    Article  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005b). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  Google Scholar 

  • Bartkova J, Rajpert-De Meyts E, Skakkebæk NE, Lukas J, Bartek J . (2003). Deregulation of the G1/S-phase control in human testicular germ cell tumours. APMIS 111: 252–265.

    Article  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  Google Scholar 

  • Bassing CH, Alt FW . (2004). The cellular response to general and programmed DNA double strand breaks. DNA Repair 3: 781–796.

    Article  CAS  Google Scholar 

  • Bekker-Jensen S, Lukas C, Melander F, Bartek J, Lukas J . (2005). Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J Cell Biol 170: 201–211.

    Article  CAS  Google Scholar 

  • d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T et al. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature 426: 194–198.

    Article  CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccini S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  Google Scholar 

  • DiTullio RA, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J et al. (2002). 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4: 998–1002.

    Article  CAS  Google Scholar 

  • Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, Pappin D et al. (2003). MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421: 952–956.

    Article  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  Google Scholar 

  • Horejsi Z, Falck J, Bakkenist C, Kastan M, Lukas J, Bartek J . (2004). Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene 23: 3122–3127.

    Article  CAS  Google Scholar 

  • Huyen Y, Zgheib O, Ditullio Jr RA, Gorgoulis VG, Zacharatos P, Petty TJ et al. (2004). Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432: 406–411.

    Article  CAS  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37–45.

    Article  CAS  Google Scholar 

  • Kastan M, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  Google Scholar 

  • Kumagai A, Dunphy WG . (2000). Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6: 839–849.

    Article  CAS  Google Scholar 

  • Kumagai A, Lee J, Yoo HY, Dunphy WG . (2006). TopBP1 activates the ATR-ATRIP complex. Cell 124: 943–955.

    Article  CAS  Google Scholar 

  • Latella L, Lukas J, Simone C, Puri PL, Bartek J . (2004). Differentiation-induced radioresistance in muscle cells. Mol Cell Biol 24: 6350–6361.

    Article  CAS  Google Scholar 

  • Liu S, Bekker-Jensen S, Mailand N, Lukas C, Bartek J, Lukas J . (2006). Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol Cell Biol 26: 6056–6064.

    Article  CAS  Google Scholar 

  • Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A et al. (2006). MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21: 187–200.

    Article  CAS  Google Scholar 

  • Lukas C, Bartkova J, Latella L, Falck J, Mailand N, Schroeder T et al. (2001). DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res 61: 4990–4993.

    CAS  PubMed  Google Scholar 

  • Lukas C, Melander F, Stucki M, Falck J, Bekker-Jensen S, Goldberg M et al. (2004a). Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J 23: 2674–2683.

    Article  CAS  Google Scholar 

  • Lukas J, Lukas C, Bartek J . (2004b). Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair 3: 997–1007.

    Article  CAS  Google Scholar 

  • Lutzker S, Levine AJ . (1996). A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nature Med 2: 804–810.

    Article  CAS  Google Scholar 

  • Mochan TA, Venere M, DiTullio RA, Halazonetis TD . (2003). 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 63: 8586–8591.

    CAS  PubMed  Google Scholar 

  • Mochan TA, Venere M, DiTullio RA, Halazonetis TD . (2004). 53BP1, an activator of ATM in response to DNA damage. DNA Repair 3: 945–952.

    Article  CAS  Google Scholar 

  • Morales JC, Franco S, Murphy MM, Bassing CH, Millas KD, Adams MM et al. (2006). 53BP1 and p53 synergize to suppress genomic instability and lymphomagenesis. Proc Natl Acad Sci USA 103: 3310–3315.

    Article  CAS  Google Scholar 

  • Nevanlinna H, Bartek J . (2006). The CHEK2 gene and inherited breast cancer susceptibility. Oncogene 25: 5912–5919.

    Article  CAS  Google Scholar 

  • Nowak R, Sikora K, Pietas A, Skoneczna I, Chrapusta SJ . (2000). Germ cell-like telomeric length homeostasis in nonseminomatous testicular germ cell tumors. Oncogene 19: 4075–4078.

    Article  CAS  Google Scholar 

  • Oosterhuis JW, Looijenga LHJ . (2005). Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5: 210–222.

    Article  CAS  Google Scholar 

  • Petrini JH, Stracker TH . (2003). The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13: 458–462.

    Article  CAS  Google Scholar 

  • Pusapati RV, Rounbehler RJ, Hong S, Powers JT, Yan M, Kiguchi K et al. (2006). ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc Natl Acad Sci USA 103: 1446–1451.

    Article  CAS  Google Scholar 

  • Rajpert-De Meyts E . (2006). Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. Hum Reprod Upd 12: 303–323.

    Article  CAS  Google Scholar 

  • Rajpert-De Meyts E, Bartkova J, Samson M, Hoei-Hansen CE, Frydelund-Larsen L, Bartek J et al. (2003). The emerging phenotype of the testicular carcinoma in situ germ cell. APMIS 111: 267–278.

    PubMed  Google Scholar 

  • Schultz LB, Chehab NH, Malikzay A, Halazonetis TD . (2000). p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 151: 1381–1390.

    Article  CAS  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  Google Scholar 

  • Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ . (2003). MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421: 961–966.

    Article  CAS  Google Scholar 

  • Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP . (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123: 1213–1226.

    Article  CAS  Google Scholar 

  • Stucki M, Jackson SP . (2006). gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 5: 534–543.

    Article  CAS  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T . (2003). DNA damage foci at dysfunctional telomeres. Curr Biol 13: 1549–1556.

    Article  CAS  Google Scholar 

  • Tort F, Bartkova J, Sehested M, Orntoft T, Lukas J, Bartek J . (2006). Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis. Cancer Res 66: 10258–10263.

    Article  CAS  Google Scholar 

  • Ward IM, Difilippantonio S, Minn K, Mueller MD, Molina JR, Yu X et al. (2005). 53BP1 cooperates with p53 and functions as a haploinsufficient tumor suppressor in mice. Mol Cell Biol 25: 10079–10086.

    Article  CAS  Google Scholar 

  • Ward IM, Minn K, van Deursen J, Chen J . (2003). p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 23: 2556–2563.

    Article  CAS  Google Scholar 

  • Xu X, Stern DF . (2003). NFBD1/MDC1 regulates ionizing radiation-induced focus formation by DNA checkpoint signaling and repair factors. FASEB J 17: 1842–1848.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Danish Cancer Society, the Danish National Research Fund, the Danish Centre for Translational Breast Cancer Research, the European Commission (integrated projects ‘Active p53’, ‘DNA repair’ and ‘Mutant p53’), MSM (grant no. 6198959216) and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Bartek.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartkova, J., Hořejs̆í, Z., Sehested, M. et al. DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene 26, 7414–7422 (2007). https://doi.org/10.1038/sj.onc.1210553

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210553

Keywords

This article is cited by

Search

Quick links