Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1

Abstract

Caveolin-1 (Cav-1) is an integral transmembrane protein and a critical component in interactions of integrin receptors with cytoskeleton-associated and signaling molecules. Since integrin-mediated cell adhesion generates signals conferring radiation resistance, we examined the effects of small interfering RNA-mediated knockdown of Cav-1 alone or in combination with β1-integrin or focal adhesion kinase (FAK) on radiation survival and proliferation of pancreatic carcinoma cell lines. Irradiation induced Cav-1 expression in PATU8902, MiaPaCa2 and Panc1 cell lines. The cell lines showed significant radiosensitization after knockdown of Cav-1, β1-integrin or FAK and cholesterol depletion by β-cyclodextrin relative to nonspecific controls. Under knockdown conditions, proliferation of non-irradiated and irradiated cells was significantly attenuated relative to controls. These findings correlated with changes in expression or phosphorylation of Akt, glycogen synthase kinase 3β, Paxillin, Src, c-Jun N-terminal kinase and mitogen-activated protein kinase. Analysis of DNA microarray data revealed a Cav-1 overexpression in a subset of pancreatic ductal adenocarcinoma samples. The data presented show, for the first time, that disruption of interactions of Cav-1 with β1-integrin or FAK affects radiation survival and proliferation of pancreatic carcinoma cells and suggest that Cav-1 is critical to these processes. These results indicate that strategies targeting Cav-1 may be useful as an approach to improve conventional therapies, including radiotherapy, for pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Belanger MM, Gaudreau M, Roussel E, Couet J . (2004). Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biol Ther 3: 954–959.

    Article  CAS  PubMed  Google Scholar 

  • Buttery RC, Rintoul RC, Sethi T . (2004). Small cell lung cancer: the importance of the extracellular matrix. Int J Biochem Cell Biol 36: 1154–1160.

    Article  CAS  PubMed  Google Scholar 

  • Carver LA, Schnitzer JE . (2003). Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3: 571–581.

    Article  CAS  PubMed  Google Scholar 

  • Cherubini A, Hofmann G, Pillozzi S, Guasti L, Crociani O, Cilia E et al. (2005). Human ether-a-go-go-related gene 1 channels are physically linked to beta1 integrins and modulate adhesion-dependent signaling. Mol Biol Cell 16: 2972–2983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J et al. (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284: C457–C474.

    Article  CAS  PubMed  Google Scholar 

  • Cordes N . (2004). Overexpression of hyperactive integrin-linked kinase leads to increased cellular radiosensitivity. Cancer Res 64: 5683–5692.

    Article  CAS  PubMed  Google Scholar 

  • Cordes N, Meineke V . (2003). Cell adhesion-mediated radioresistance (CAM-RR). Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro. Strahlenther Onkol 179: 337–344.

    Article  PubMed  Google Scholar 

  • Cordes N, Seidler J, Durzok R, Geinitz H, Brakebusch C . (2006). Beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury. Oncogene 25: 1378–1390.

    Article  CAS  PubMed  Google Scholar 

  • Eke I, Sandfort V, Mischkus A, Baumann M, Cordes N . (2006). Antiproliferative effects of EGFR tyrosine kinase inhibition and radiation-induced genotoxic injury are attenuated by adhesion to fibronectin. Radiother Oncol 80: 178–184.

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  • Estrugo D, Fischer A, Hess F, Scherthan H, Belka C, Cordes N . (2007). Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells. PLoS ONE 2: e269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiucci G, Ravid D, Reich R, Liscovitch M . (2002). Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21: 2365–2375.

    Article  CAS  PubMed  Google Scholar 

  • Fritz G, Brachetti C, Kaina B . (2003). Lovastatin causes sensitization of HeLa cells to ionizing radiation-induced apoptosis by the abrogation of G2 blockage. Int J Radiat Biol 79: 601–610.

    Article  CAS  PubMed  Google Scholar 

  • Galbiati F, Volonte D, Engelman JA, Watanabe G, Burk R, Pestell RG et al. (1998). Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17: 6633–6648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbiati F, Volonte D, Liu J, Capozza F, Frank PG, Zhu L et al. (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell 12: 2229–2244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez E, Nagiel A, Lin AJ, Golan DE, Michel T . (2004). Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J Biol Chem 279: 40659–40669.

    Article  CAS  PubMed  Google Scholar 

  • Grutzmann R, Boriss H, Ammerpohl O, Luttges J, Kalthoff H, Schackert HK et al. (2005). Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes. Oncogene 24: 5079–5088.

    Article  PubMed  Google Scholar 

  • Grutzmann R, Foerder M, Alldinger I, Staub E, Brummendorf T, Ropcke S et al. (2003). Gene expression profiles of microdissected pancreatic ductal adenocarcinoma. Virchows Arch 443: 508–517.

    Article  PubMed  Google Scholar 

  • Grutzmann R, Pilarsky C, Ammerpohl O, Luttges J, Bohme A, Sipos B et al. (2004). Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia 6: 611–622.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hailstones D, Sleer LS, Parton RG, Stanley KK . (1998). Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res 39: 369–379.

    CAS  PubMed  Google Scholar 

  • Hayashi K, Matsuda S, Machida K, Yamamoto T, Fukuda Y, Nimura Y et al. (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res 61: 2361–2364.

    CAS  PubMed  Google Scholar 

  • Hehlgans S, Haase M, Cordes N . (2007). Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775: 163–180.

    CAS  PubMed  Google Scholar 

  • Hess F, Estrugo D, Fischer A, Belka C, Cordes N . (2007). Integrin-linked kinase interacts with caspase-9 and -8 in an adhesion-dependent manner for promoting radiation-induced apoptosis in human leukemia cells. Oncogene 26: 1372–1384.

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson PS, Elliott T, Wong WS, Rintoul RC, Mackinnon AC, Haslett C et al. (2006). ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase. Cell Death Differ 13: 1776–1788.

    Article  CAS  PubMed  Google Scholar 

  • Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, Van Heek NT, Rosty C et al. (2003). Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162: 1151–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliakis G . (1997). Cell cycle regulation in irradiated and nonirradiated cells. Semin Oncol 24: 602–615.

    CAS  PubMed  Google Scholar 

  • Kasahara T, Koguchi E, Funakoshi M, Aizu-Yokota E, Sonoda Y . (2002). Antiapoptotic action of focal adhesion kinase (FAK) against ionizing radiation. Antioxid Redox Signal 4: 491–499.

    Article  CAS  PubMed  Google Scholar 

  • Koleske AJ, Baltimore D, Lisanti MP . (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 92: 1381–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE . (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16: 1391–1397.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wong WH . (2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98: 31–36.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hassan GS, Williams TM, Minetti C, Pestell RG, Tanowitz HB et al. (2005). Loss of caveolin-1 causes the hyper-proliferation of intestinal crypt stem cells, with increased sensitivity to whole body gamma-radiation. Cell Cycle 4: 1817–1825.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ren CH, Tahir SA, Ren C, Thompson TC . (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 23: 9389–9404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AC, Kariko K, Myers CE, Clark EP, Samid D . (1993). Increased radioresistance of EJras-transformed human osteosarcoma cells and its modulation by lovastatin, an inhibitor of p21ras isoprenylation. Int J Cancer 53: 302–307.

    Article  CAS  PubMed  Google Scholar 

  • Razani B, Woodman SE, Lisanti MP . (2002). Caveolae: from cell biology to animal physiology. Pharmacol Rev 54: 431–467.

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Jodoin J, Khoueir P, Rolland Y, Berthelet F, Moumdjian R et al. (2004). Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy. J Neurosci Res 75: 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C et al. (1999). Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5: 662–668.

    Article  CAS  PubMed  Google Scholar 

  • Shatz M, Liscovitch M . (2004). Caveolin-1 and cancer multidrug resistance: coordinate regulation of pro-survival proteins? Leuk Res 28: 907–908.

    Article  CAS  PubMed  Google Scholar 

  • Sunaga N, Miyajima K, Suzuki M, Sato M, White MA, Ramirez RD et al. (2004). Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res 64: 4277–4285.

    Article  CAS  PubMed  Google Scholar 

  • Suzuoki M, Miyamoto M, Kato K, Hiraoka K, Oshikiri T, Nakakubo Y et al. (2002). Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br J Cancer 87: 1140–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wary KK, Mariotti A, Zurzolo C, Giancotti FG . (1998). A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94: 625–634.

    Article  CAS  PubMed  Google Scholar 

  • Williams TM, Lee H, Cheung MW, Cohen AW, Razani B, Iyengar P et al. (2004). Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis: role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. J Biol Chem 279: 24745–24756.

    Article  CAS  PubMed  Google Scholar 

  • Williams TM, Lisanti MP . (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 288: C494–C506.

    Article  CAS  PubMed  Google Scholar 

  • Yacoub A, Hawkins W, Hanna D, Young H, Park MA, Grant M et al. (2007). Human chorionic gonadotropin modulates prostate cancer cell survival after irradiation or HMG CoA reductase inhibitor treatment. Mol Pharmacol 71: 259–275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Hiber, B Reincke and G Schröder for excellent technical assistance and M Liscovitch (Weizmann Institute of Science, Israel) for pcDNA3-Cav-1 and control vectors. The work was supported in part by grants from the German Ministry of Education and Research (BMBF Contract 03ZIK041 to NC), by the Deutsche Krebshilfe (70-2937-SaI to RG) as well as a MRC fellowship and RO1 CA73820 to EJB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Cordes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordes, N., Frick, S., Brunner, T. et al. Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene 26, 6851–6862 (2007). https://doi.org/10.1038/sj.onc.1210498

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210498

Keywords

This article is cited by

Search

Quick links