Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SH2B1β adaptor is a key enhancer of RET tyrosine kinase signaling

Abstract

The RET gene encodes two main isoforms of a receptor tyrosine kinase (RTK) implicated in various human diseases. Activating germ-line point mutations are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinomas, inactivating germ-line mutations for Hirschsprung's disease, while somatic rearrangements (RET/PTCs) are specific to papillary thyroid carcinomas. SH2B1β, a member of the SH2B adaptors family, and binding partner for several RTKs, has been recently described to interact with proto-RET. Here, we show that both RET isoforms and its oncogenic derivatives bind to SH2B1β through the SRC homology 2 (SH2) domain and a kinase activity-dependent mechanism. As a result, RET phosphorylates SH2B1β, which in turn enhances its autophosphorylation, kinase activity, and downstream signaling. RET tyrosine residues 905 and 981 are important determinants for functional binding of the adaptor, as removal of both autophosphorylation sites displaces its recruitment. Binding of SH2B1β appears to protect RET from dephosphorylation by protein tyrosine phosphatases, and might represent a likely mechanism contributing to its upregulation. Thus, overexpression of SH2B1β, by enhancing phosphorylation/activation of RET transducers, potentiates the cellular differentiation and the neoplastic transformation thereby induced, and counteracts the action of RET inhibitors. Overall, our results identify SH2B1β as a key enhancer of RET physiologic and pathologic activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahmed Z, Pillay TS . (2001). Functional effects of APS and SH2-B on insulin receptor signalling. Biochem Soc Trans 29: 529–534.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed Z, Pillay TS . (2003). Adapter protein with a pleckstrin homology (PH) and an Src homology 2 (SH2) domain (APS) and SH2-B enhance insulin-receptor autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3-kinase-dependent signalling. Biochem J 371: 405–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Airaksinen MS, Saarma M . (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3: 383–394.

    Article  CAS  PubMed  Google Scholar 

  • Alberti L, Carniti C, Miranda C, Roccato E, Pierotti MA . (2003). RET and NTRK1 Proto-Oncogenes in Human Diseases. J Cell Physiol 195: 168–186.

    Article  CAS  PubMed  Google Scholar 

  • Arighi E, Alberti L, Torriti F, Ghizzoni S, Rizzetti MG, Pelicci G et al. (1997). Identification of SHC docking site on Ret tyrosine kinase. Oncogene 14: 773–782.

    Article  CAS  PubMed  Google Scholar 

  • Arighi E, Borrello MG, Sariola H . (2005). RET tyrosine kinase signaling in development and cancer. Cytokine Growth F R 16: 441–467.

    Article  CAS  Google Scholar 

  • Besser D, Bromberg JF, Darnell Jr JE, Hanafusa H . (1999). A single amino acid substitution in the v-Eyk intracellular domain results in activation of Stat3 and enhances cellular transformation. Mol Cell Biol 19: 1401–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongarzone I, Monzini N, Borrello MG, Carcano C, Ferraresi G, Arighi E et al. (1993). Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RIa of cyclic AMP-dependent protein kinase A. Mol Cell Biol 13: 358–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrello MG, Alberti L, Arighi E, Bongarzone I, Battistini C, Bardelli A et al. (1996). The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol 16: 2151–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrello MG, Smith DP, Pasini B, Bongarzone I, Greco A, Lorenzo MJ et al. (1995). RET activation by germline MEN2A and MEN2B mutations. Oncogene 11: 2419–2427.

    CAS  PubMed  Google Scholar 

  • Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell Jr JE . (1998). Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 18: 2553–2558.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canu N, Possenti R, Rinaldi AM, Trani E, Levi A . (1997). Molecular cloning and characterization of the human VGF promoter region. J Neurochem 68: 1390–1399.

    Article  CAS  PubMed  Google Scholar 

  • Carlomagno F, Vitagliano D, Guida T, Napolitano M, Vecchio G, Fusco A et al. (2002). The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res 62: 1077–1082.

    CAS  PubMed  Google Scholar 

  • Cuccuru G, Lanzi C, Cassinelli G, Pratesi G, Tortoreto M, Petrangolini G et al. (2004). Cellular effects and antitumor activity of RET inhibitor RPI-1 on MEN2A-associated medullary thyroid carcinoma. J Natl Cancer Inst 96: 1006–1014.

    Article  CAS  PubMed  Google Scholar 

  • de Graaff E, Srinivas S, KilKenny C, D'Agati V, Mankoo BS, Costantini F et al. (2001). Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev 15: 2433–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhe-Paganon S, Werner ED, Nishi M, Hansen L, Chi YI, Shoelson SE . (2004). A phenylalanine zipper mediates APS dimerization. Nat Struct Mol Biol 11: 968–974.

    Article  CAS  PubMed  Google Scholar 

  • Donatello S, Alberti L, Fiorino A, Degl'Innocenti D, Rizzetti MG, Gorla L et al. (2004). Identification of SH2-Bβ as a RET adaptor protein. Tumori 4: 122.

    Google Scholar 

  • Duan C, Yang H, White MF, Rui L . (2004). Disruption of the SH2-B gene causes age-dependent insulin resistance and glucose intolerance. Mol Cell Biol 24: 7435–7443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorla L, Cantu M, Micciche' F, Patelli C, Mondellini P, Pierotti MA et al. (2006). Ret oncoproteins induce tyrosine phosphorylation changes of proteins involved in RNA metabolism. Cell Signal 18: 2272–2282.

    Article  CAS  PubMed  Google Scholar 

  • Gryz EA, Meakin SO . (2000). Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-independent cell survival and neuronal differentiation. Oncogene 19: 417–430.

    Article  CAS  PubMed  Google Scholar 

  • Hennige AM, Lammers R, Hoppner W, Arlt D, Strack V, Teichmann R et al. (2001). Inhibition of Ret oncogene activity by the protein tyrosine phosphatase SHP1. Endocrinology 142: 4441–4447.

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Liu J, Ghirlando R, Saltiel AR, Hubbard SR . (2003). Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. Mol Cell 12: 1379–1389.

    Article  CAS  PubMed  Google Scholar 

  • Ichihara M, Murakumo Y, Takahashi M . (2004). RET and neuroendocrine tumors. Cancer Lett 204: 197–211.

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto Y, Takeda K, Okuno Y, Yamakawa Y, Ito Y, Taguchi R et al. (2004). Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem 279: 14213–14224.

    Article  CAS  PubMed  Google Scholar 

  • Kong M, Wang CS, Donoghue DJ . (2002). Interaction of fibroblast growth factor receptor 3 and the adapter protein SH2-B. A role in STAT5 activation. J Biol Chem 277: 15962–15970.

    Article  CAS  PubMed  Google Scholar 

  • Kotani K, Wilden P, Pillay TS . (1998). SH2-Balpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase. Biochem J 335: 103–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurzer JH, Argetsinger LS, Zhou YJ, Kouadio JL, O'Shea JJ, Carter-Su C . (2004). Tyrosine 813 is a site of JAK2 autophosphorylation critical for activation of JAK2 by SH2-B beta. Mol Cell Biol 24: 4557–4570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RJ, Albanese C, Stenger RJ, Watanabe G, Inghirami G, Haines GK et al. (1999). pp60(v-src) induction of cyclin D1 requires collaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. A role for cAMP response element-binding protein and activating transcription factor-2 in pp60(v-src) signaling in breast cancer cells. J Biol Chem 274: 7341–7350.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo MJ, Gish GD, Houghton C, Stonehouse TJ, Pawson T, Ponder BAJ et al. (1997). RET alternate splicing influences the interaction of activated RET with the SH2 and PTB domains of Shc, and the SH2 domain of Grb2. Oncogene 14: 763–771.

    Article  CAS  PubMed  Google Scholar 

  • Nelms K, O'Neill TJ, Li S, Hubbard SR, Gustafson TA, Paul WE . (1999). Alternative splicing, gene localization, and binding of SH2-B to the insulin receptor kinase domain. Mamm Genome 10: 1160–1167.

    Article  CAS  PubMed  Google Scholar 

  • O'Brien KB, Argetsinger LS, Diakonova M, Carter-Su C . (2003). YXXL motifs in SH2-Bbeta are phosphorylated by JAK2, JAK1, and platelet-derived growth factor receptor and are required for membrane ruffling. J Biol Chem 278: 11970–11978.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka S, Takaki S, Iseki M, Miyoshi K, Nakagata N, Kataoka Y et al. (2002). SH2-B is required for both male and female reproduction. Mol Cell Biol 22: 3066–3077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne MA, Dalton S, Kochan JP . (1995). The yeast tribrid system-genetic detection of trans-phosphorylated ITAM-SH2-interactions. Biotechnology 13: 1474–1478.

    CAS  PubMed  Google Scholar 

  • Qian X, Ginty DD . (2001). SH2-B and APS are multimeric adapters that augment trkA signaling. Mol Cell Biol 21: 1613–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X, Riccio A, Zhang Y, Ginty DD . (1998). Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21: 1017–1029.

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran KS . (2001). Signaling via Shc family adapter proteins. Oncogene 20: 6322–6330.

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Li M, Duan C, Rui L . (2005). Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice. Cell Metab 2: 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Riedel H, Wang J, Hansen H, Yousaf N . (1997). PSM, an insulin-dependent, pro-rich, PH, SH2 domain containing partner of the insulin receptor. J Biochem (Tokyo) 122: 1105–1113.

    Article  CAS  Google Scholar 

  • Roccato E, Miranda C, Raho G, Pagliardini S, Pierotti MA, Greco A . (2005). Analysis of SHP-1 mediated down-regulation of the TRK-T3 oncoprotein identifies TFG as a novel SHP-1 interacting protein. J Biol Chem 280: 3382–3389.

    Article  CAS  PubMed  Google Scholar 

  • Rui L, Carter-Su C . (1998). Platelet-derived growth factor (PDGF) stimulates the association of SH2-Bbeta with PDGF receptor and phosphorylation of SH2-Bbeta. J Biol Chem 273: 21239–21245.

    Article  CAS  PubMed  Google Scholar 

  • Rui L, Carter-Su C . (1999). Identification of SH2-bbeta as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc Natl Acad Sci USA 96: 7172–7177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui L, Gunter DR, Herrington J, Carter-Su C . (2000). Differential binding to and regulation of JAK2 by the SH2 domain and N-terminal region of SH2-Bbeta. Mol Cell Biol 20: 3168–3177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui L, Mathews LS, Hotta K, Gustafson TA, Carter-Su C . (1997). Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol 17: 6633–6644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M . (2001). The GDNF/RET signaling pathway and human diseases. Cytokine Growth F 12: 361–373.

    Article  CAS  Google Scholar 

  • Wang J, Riedel H . (1998). Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. J Biol Chem 273: 3136–3139.

    Article  CAS  PubMed  Google Scholar 

  • Yousaf N, Deng Y, Kang Y, Riedel H . (2001). Four PSM/SH2-B alternative splice variants and their differential roles in mitogenesis. J Biol Chem 276: 40940–40948.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu W, Wang YG, Liu XJ, Jiao L, Liu X et al. (2006). Interaction of SH2-B{beta} with RET is involved in signaling of GDNF-induced neurite outgrowth. J Cell Sci 119: 1666–1676.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to C Carter-Su (University of Michigan, Ann Arbor, MI, USA) for generously providing SH2B1β cDNA, to J Darnell (The Rockfeller University, New York, NY, USA) for STAT3 and pm674TATAluc constructs, to A Ullrich (Max-Planck-Institut, Martinsried, Germany) for SHP-1 plasmid, to R Possenti (Tor Vergata University, Rome, Italy) for pvgf8luc, and R Pestell (Georgetown University, Washington, DC, USA) for pCD1luc reporter. We thank Piera Mondellini for SH2B1β expression studies on thyroid tissues, Marco Cantù for MS analysis, Maria Teresa Radice for technical assistance, Vijay Kumar and Elena Arighi for critical reading of the article. This research was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) and by the European Community's Sixth Framework Programme under the SIMAP Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M A Pierotti or M G Borrello.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donatello, S., Fiorino, A., Degl'Innocenti, D. et al. SH2B1β adaptor is a key enhancer of RET tyrosine kinase signaling. Oncogene 26, 6546–6559 (2007). https://doi.org/10.1038/sj.onc.1210480

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210480

Keywords

This article is cited by

Search

Quick links