Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Brca1 heterozygous mice have shortened life span and are prone to ovarian tumorigenesis with haploinsufficiency upon ionizing irradiation

Abstract

BRCA1 mutation carriers have an 85% lifetime risk of breast cancer and 60% for ovarian cancer. BRCA1 facilitates DNA double-strand break repair, and dysfunction of BRCA1 leads to hypersensitivity to DNA damaging agents and consequently genomic instability of cells. In this communication, we have examined the tumor incidence and survival of Brca1 heterozygous female mice. Brca1 heterozygotes appear to have a shortened life span with 70% tumor incidence. Lymphoma, but not ovarian and mammary gland tumors, occurs commonly in these mice. After a whole-body exposure to ionizing radiation, Brca1 heterozygous mice have a 3–5-fold higher incidence specific to ovarian tumors, but not lymphoma, when compared with the Brca1+/+ mice. All the tumors from heterozygous mice examined retain the wild-type allele and the cancer cells express Brca1 protein, precluding the chromosomal mechanism for loss of heterozygosity of Brca1 locus. Although the manifestation of BRCA1 haploinsufficiency may be different between human and mouse, this study suggests that women carrying Brca1 mutations may be more prone to ovarian tumor formation after IR exposure than nonmutation carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Baeyens A, Thierens H, Claes K, Poppe B, de Ridder L, Vral A . (2004). Chromosomal radiosensitivity in BRCA1 and BRCA2 mutation carriers. Int J Radiat Biol 80: 745–756.

    Article  CAS  Google Scholar 

  • Baria K, Warren C, Roberts SA, West CM, Evans DG, Varley JM et al. (2001) Correspondence re: A. Rothfuss et al., Induced micronucleus frequencies in peripheral blood lymphocytes as a screening test for carriers of a BRCA1 mutation in breast cancer families. Cancer Res 61: 5948–5949.

    CAS  PubMed  Google Scholar 

  • Baldeyron C, Jacquemin E, Smith J, Jacquemont C, De Oliveira I, Gad S et al. (2002). A single mutated BRCA1 allele leads to impaired fidelity of double strand break end-joining. Oncogene 21: 1401–1410.

    Article  CAS  Google Scholar 

  • Brekelmans CT, Seynaeve C, Bartels CC, Tilanus-Linthorst MM, Meijers-Heijboer EJ, Crepin CM et al. (2001). Effectiveness of breast cancer surveillance in BRCA1/2 gene mutation carriers and women with high familial risk. J Clin Oncol 19: 924–930.

    Article  CAS  Google Scholar 

  • Burke W, Daly M, Garber J, Botkin J, Daly M, Garber J et al. (1997). Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA 277: 997–1003.

    Article  CAS  Google Scholar 

  • Cao L, Li W, Kim S, Brodie SG, Deng CX . (2003). Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 17: 201–213.

    Article  CAS  Google Scholar 

  • Couch FJ, DeShano ML, Blackwood MA, Calzone K, Stopfer J, Campeau L et al. (1997). BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. N Engl J Med 336: 1409–1415.

    Article  CAS  Google Scholar 

  • de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB, van Steeg H et al. (2002). Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276–1279.

    Article  CAS  Google Scholar 

  • Deng CX, Xu X . (2004). Generation and analysis of Brca1 conditional knockout mice. Methods Mol Biol 280: 185–200.

    CAS  PubMed  Google Scholar 

  • Easton DF, Ford D, Bishop DT . (1995). Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56: 265–271.

    Article  CAS  Google Scholar 

  • Fletcher SW, Black W, Harris R, Rimer BK, Shapiro S . (1993). Report of the International Workshop on Screening for Breast Cancer. J Natl Cancer Inst 85: 1644–1656.

    Article  CAS  Google Scholar 

  • Foray N, Randrianarison V, Marot D, Perricaudet M, Lenoir G, Feunteun J . (1999). Gamma-rays-induced death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene 18: 7334–7342.

    Article  CAS  Google Scholar 

  • Friedenson B . (2000). Is mammography indicated for women with defective BRCA genes? Implications of recent scientific advances for the diagnosis, treatment, and prevention of hereditary breast cancer. MedGenMed 2: E9.

    CAS  PubMed  Google Scholar 

  • Goldfrank D, Chuai S, Bernstein JL, Ramon Y, Cajal T, Lee JB et al. (2006). Effect of mammography on breast cancer risk in women with mutations in BRCA1 or BRCA2. Cancer Epidemiol Biomarkers Pre 15: 2311–2313.

    Article  CAS  Google Scholar 

  • Goss PE, Sierra S . (1998). Current perspectives on radiation-induced breast cancer. J Clin Oncol 6: 338–347.

    Article  Google Scholar 

  • Greenblatt MS, Chappuis PO, Bond JP, Hamel N, Foulkes WD . (2001). TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res 61: 4092–4097.

    CAS  PubMed  Google Scholar 

  • Haffty BG, Harrold E, Khan AJ, Pathare P, Smith TE, Turner BC et al. (2002). Outcome of conservatively managed early-onset breast cancer by BRCA1/2 status. Lancet 359: 1471–1477.

    Article  Google Scholar 

  • Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y et al. (2001). The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 276: 14537–14540.

    Article  CAS  Google Scholar 

  • Kirova YM, Vilcoq JR, Asselain B, Sastre-Garau X, Fourquet A . (2005). Radiation-induced sarcomas after radiotherapy for breast carcinoma: a large-scale single-institution review. Cancer 104: 856–863.

    Article  Google Scholar 

  • Kote-Jarai Z, Salmon A, Mengitsu T, Copeland M, Ardern-Jones A, Locke I et al. (2006). Increased level of chromosomal damage after irradiation of lymphocytes from BRCA1 mutation carriers. Br J Cancer 94: 308–310.

    Article  CAS  Google Scholar 

  • Kotsopoulos J, Chen Z, Vallis KA, Poll A, Ainsworth P, Narod SA . (2007). DNA repair capacity as a possible biomarker of breast cancer risk in female BRCA1 mutation carriers. Br J Cancer 96: 118–125.

    Article  CAS  Google Scholar 

  • Li S, Chen PL, Subramanian T, Chinnadurai G, Tomlinson G, Osborne CK et al. (1999). Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem 274: 11334–11338.

    Article  CAS  Google Scholar 

  • Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y et al. (2001). Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406: 210–215.

    Article  Google Scholar 

  • Liu CY, Flesken-Nikitin A, Li S, Zeng Y, Lee WH . (1996). Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev 10: 1835–1843.

    Article  CAS  Google Scholar 

  • Metcalfe KA, Lynch HT, Ghadirian P, Tung N, Olivotto IA, Foulkes WD et al. (2005). The risk of ovarian cancer after breast cancer in BRCA1 and BRCA2 carriers. Gynecol Oncol 96: 222–226.

    Article  CAS  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.

    Article  CAS  Google Scholar 

  • Narod SA, Lubinski J, Ghadirian P, Lynch HT, Moller P, Foulkes WD et al. (2006). Screening mammography and risk of breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Lancet Oncol 7: 402–406.

    Article  CAS  Google Scholar 

  • Neuhausen SL, Marshall CJ . (1994). Loss of heterozygosity in familial tumors from three BRCA1-linked kindreds. Cancer Res 54: 6069–6072.

    CAS  PubMed  Google Scholar 

  • Nikitin AYu, Lee WH . (1996). Early loss of the retinoblastoma gene is associated with impaired growth inhibitory innervation during melanotroph carcinogenesis in Rb+/− mice. Genes Dev 10: 1870–1879.

    Article  CAS  Google Scholar 

  • Pao GM, Janknecht R, Ruffner H, Hunter T, Verma IM . (2000). CBP/p300 interact with and function as transcriptional coactivators of BRCA1. Proc Natl Acad Sci USA 97: 1020–1025.

    Article  CAS  Google Scholar 

  • Rothfuss A, Schutz P, Bochum S, Volm T, Eberhardt E, Kreienberg R et al. (2000). Induced micronucleus frequencies in peripheral lymphocytes as a screening test for carriers of a BRCA1 mutation in breast cancer families. Cancer Res 60: 390–394.

    CAS  Google Scholar 

  • Salim EI, Wanibuchi H, Morimura K, Wei M, Mitsuhashi M, Yoshida K et al. (2003). Carcinogenicity of dimethylarsinic acid in p53 heterozygous knockout and wild-type C57BL/6J mice. Carcinogenesis 24: 335–342.

    Article  CAS  Google Scholar 

  • Schildkraut JM, Bastos E, Berchuck A . (1997). Relationship between lifetime ovulatory cycles and overexpression of mutant p53 in epithelial ovarian cancer. J Natl Cancer Inst 89: 932–938.

    Article  CAS  Google Scholar 

  • Scully R, Anderson SF, Chao DM, Wei W, Ye L, Young RA et al. (1997). BRCA1 is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci USA 94: 5605–5610.

    Article  CAS  Google Scholar 

  • Shanley S, McReynolds K, Ardern-Jones A, Ahern R, Fernando I, Yarnold J et al. (2006). Late toxicity is not increased in BRCA1/BRCA2 mutation carriers undergoing breast radiotherapy in the United Kingdom. Clin Cancer Res 12: 7025–7032.

    Article  CAS  Google Scholar 

  • Shen SX, Weaver Z, Xu X, Li C, Weinstein M, Chen L et al. (1998). A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17: 3115–3124.

    Article  CAS  Google Scholar 

  • Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT . (1995). Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 9: 444–450.

    Article  CAS  Google Scholar 

  • Ting NS, Lee WH . (2004). The DNA double-strand break response pathway: becoming more BRCAish than ever. DNA Repair 3: 935–944.

    Article  CAS  Google Scholar 

  • Verhoog LC, Brekelmans CT, Seynaeve C, Dahmen G, van Geel AN, Bartels CC et al. (1998). Survival and tumour characteristics of breast-cancer patients with germline mutations of BRCA1. Lancet 351: 316–321.

    Article  CAS  Google Scholar 

  • Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P . (1999). Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci USA 96: 10770–10775.

    Article  CAS  Google Scholar 

  • Wagner TM, Moslinger RA, Muhr D, Langbauer G, Hirtenlehner K, Concin H et al. (1998). BRCA1-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1 mutations and pathological characteristics. Int J Cancer 77: 354–360.

    Article  CAS  Google Scholar 

  • Yarden RI, Brody LC . (1999). BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci USA 96: 4983–4988.

    Article  CAS  Google Scholar 

  • Yu X, Chini CC, He M, Mer G, Chen J . (2003). The BRCT domain is a phospho-protein binding domain. Science 302: 639–642.

    Article  CAS  Google Scholar 

  • Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT et al. (2004). Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 24: 708–718.

    Article  CAS  Google Scholar 

  • Zheng L, Li S, Boyer TG, Lee WH . (2000a). Lessons learned from BRCA1 and BRCA2. Oncogene 19: 6159–6175.

    Article  CAS  Google Scholar 

  • Zheng L, Pan H, Li S, Flesken-Nikitin A, Chen PL, Boyer TG et al. (2000b). Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol Cell 6: 757–768.

    Article  CAS  Google Scholar 

  • Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J et al. (1999). Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 285: 747–750.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chi-Fen Chen and Xiaoqin Lin for their kind assistance. This work was supported by a grant from the National Institute of Health (RO1 94170) to W-H Lee, a predoctoral fellowship from the Department of Defense (W81XWH-05-1-0322 to SF), and a physician scientist award from the National Health Research Institute in Taiwan to Y-M J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W-H Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeng, YM., Cai-Ng, S., Li, A. et al. Brca1 heterozygous mice have shortened life span and are prone to ovarian tumorigenesis with haploinsufficiency upon ionizing irradiation. Oncogene 26, 6160–6166 (2007). https://doi.org/10.1038/sj.onc.1210451

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210451

Keywords

This article is cited by

Search

Quick links