Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

mir-29 regulates Mcl-1 protein expression and apoptosis

Abstract

Cellular expression of Mcl-1, an anti-apoptotic Bcl-2 family member, is tightly regulated. Recently, Bcl-2 expression was shown to be regulated by microRNAs, small endogenous RNA molecules that regulate protein expression through sequence-specific interaction with messenger RNA. By analogy, we reasoned that Mcl-1 expression may also be regulated by microRNAs. We chose human immortalized, but non-malignant, H69 cholangiocyte and malignant KMCH cholangiocarcinoma cell lines for these studies, because Mcl-1 is dysregulated in cells with the malignant phenotype. By in silico analysis, we identified a putative target site in the Mcl-1 mRNA for the mir-29 family, and found that mir-29b was highly expressed in cholangiocytes. Interestingly, mir-29b was downregulated in malignant cells, consistent with Mcl-1 protein upregulation. Enforced mir-29b expression reduced Mcl-1 protein expression in KMCH cells. This effect was direct, as mir-29b negatively regulated the expression of an Mcl-1 3′ untranslated region (UTR)-based reporter construct. Enforced mir-29b expression reduced Mcl-1 cellular protein levels and sensitized the cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity. Transfection of non-malignant cells (that express high levels of mir-29) with a locked-nucleic acid antagonist of mir-29b increased Mcl-1 levels and reduced TRAIL-mediated apoptosis. Thus mir-29 is an endogenous regulator of Mcl-1 protein expression, and thereby, apoptosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801.

    Article  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  Google Scholar 

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17: 393–403.

    Article  CAS  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    Article  CAS  Google Scholar 

  • Cuconati A, Mukherjee C, Perez D, White E . (2003). DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 17: 2922–2932.

    Article  CAS  Google Scholar 

  • Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T et al. (2006). The colorectal microRNAome. Proc Natl Acad Sci USA 103: 3687–3692.

    Article  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140–D144.

    Article  CAS  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . (2004). Human MicroRNA targets. PLoS Biol 2: e363.

    Article  Google Scholar 

  • Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD et al. (1998). Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 91: 991–1000.

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ . (2005). Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128: 2054–2065.

    Article  CAS  Google Scholar 

  • Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. (2006). Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10: 375–388.

    Article  CAS  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37: 495–500.

    Article  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . (2001). Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.

    Article  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN . (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21: 4663–4670.

    Article  CAS  Google Scholar 

  • Leu JI, Dumont P, Hafey M, Murphy ME, George DL . (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6: 443–450.

    Article  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  Google Scholar 

  • McManus MT . (2003). MicroRNAs and cancer. Semin Cancer Biol 13: 253–258.

    Article  CAS  Google Scholar 

  • Michels J, Johnson PW, Packham G . (2005). Mcl-1. Int J Biochem Cell Biol 37: 267–271.

    Article  CAS  Google Scholar 

  • Neville PJ, Conti DV, Paris PL, Levin H, Catalona WJ, Suarez BK et al. (2002). Prostate cancer aggressiveness locus on chromosome 7q32-q33 identified by linkage and allelic imbalance studies. Neoplasia 4: 424–431.

    Article  CAS  Google Scholar 

  • Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F et al. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17: 1475–1486.

    Article  CAS  Google Scholar 

  • Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ . (2003). Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426: 671–676.

    Article  CAS  Google Scholar 

  • Taniai M, Grambihler A, Higuchi H, Werneburg N, Bronk SF, Farrugia DJ et al. (2004). Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 64: 3517–3524.

    Article  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R . (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20: 515–524.

    Article  CAS  Google Scholar 

  • van Delft MF, Huang DC . (2006). How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res 16: 203–213.

    Article  CAS  Google Scholar 

  • Willis SN, Adams JM . (2005). Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17: 617–625.

    Article  CAS  Google Scholar 

  • Wuilleme-Toumi S, Robillard N, Gomez P, Moreau P, Le Gouill S, Avet-Loiseau H et al. (2005). Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia 19: 1248–1252.

    Article  CAS  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189–198.

    Article  CAS  Google Scholar 

  • Yoon J-H, Werneburg NW, Higuchi H, Canbay AE, Kaufmann SH, Akgul C et al. (2002). Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism. 62: 6500–6505.

  • Zhong Q, Gao W, Du F, Wang X . (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121: 1085–1095.

    Article  CAS  Google Scholar 

  • Zhou P, Levy NB, Xie H, Qian L, Lee CY, Gascoyne RD et al. (2001). MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 97: 3902–3909.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Erin Nystuen-Bungum for secretarial assistance. Grant support was from the National Institutes of Health DK59427 (GJG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J Gores.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mott, J., Kobayashi, S., Bronk, S. et al. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26, 6133–6140 (2007). https://doi.org/10.1038/sj.onc.1210436

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210436

Keywords

This article is cited by

Search

Quick links