Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition

Abstract

The Ras-dependent extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway plays a central role in cell proliferation control. In normal cells, sustained activation of ERK1/ERK2 is necessary for G1- to S-phase progression and is associated with induction of positive regulators of the cell cycle and inactivation of antiproliferative genes. In cells expressing activated Ras or Raf mutants, hyperactivation of the ERK1/2 pathway elicits cell cycle arrest by inducing the accumulation of cyclin-dependent kinase inhibitors. In this review, we discuss the mechanisms by which activated ERK1/ERK2 regulate growth and cell cycle progression of mammalian somatic cells. We also highlight the findings obtained from gene disruption studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Abbott DW, Holt JT . (1999). Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem 274: 2732–2742.

    Article  CAS  PubMed  Google Scholar 

  • Adhikary S, Eilers M . (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Albanese C, Jonhson J, Watanabe G, Eklund N, Vu D, Arnold A et al. (1995). Transforming p21ras mutants and 2c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 270: 23589–23597.

    Article  CAS  PubMed  Google Scholar 

  • Ang XL, Harper JW . (2004). Interwoven ubiquitination oscillators and control of cell cycle transitions. Sci STKE 2004: pe31.

    Article  PubMed  Google Scholar 

  • Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K et al. (2005). c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7: 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Arber N, Sutter T, Miyake M, Kahn SM, Venkatraj VS, Sobrino A et al. (1996). Increased expression of cyclin D1 and the Rb tumor suppressor gene in c-K-ras transformed rat enterocytes. Oncogene 12: 1903–1908.

    CAS  PubMed  Google Scholar 

  • Bagui TK, Mohapatra S, Haura E, Pledger WJ . (2003). p27Kip1 and p21Cip1 are not required for the formation of active D cyclin-cdk4 complexes. Mol Cell Biol 23: 7285–7290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balmanno K, Cook SJ . (1999). Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18: 3085–3097.

    Article  CAS  PubMed  Google Scholar 

  • Bottazzi ME, Zhu X, Bohmer RM, Assoian RK . (1999). Regulation of p21(cip1) expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. J Cell Biol 146: 1255–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W et al. (1999). Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 18: 5321–5333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher MJ, Jean D, Vezina A, Rivard N . (2004). Dual role of MEK/ERK signaling in senescence and transformation of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 286: G736–G746.

    Article  CAS  PubMed  Google Scholar 

  • Bourcier C, Jacquel A, Hess J, Peyrottes I, Angel P, Hofman P et al. (2006). p44 mitogen-activated protein kinase (extracellular signal-regulated kinase 1)-dependent signaling contributes to epithelial skin carcinogenesis. Cancer Res 66: 2700–2707.

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP, Ciro M, Cocito A, Helin K . (2004). E2F target genes: unraveling the biology. Trends Biochem Sci 29: 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Brondello JM, McKenzie FR, Sun H, Tonks NK, Pouysségur J . (1995). Constitutive MAP kinase phosphatase (MKP-1) expression blocks G1 specific gene transcription and S-phase entry in fibroblasts. Oncogene 10: 1895–1904.

    CAS  PubMed  Google Scholar 

  • Brunet A, Pagès G, Pouysségur J . (1994). Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene 9: 3379–3387.

    CAS  PubMed  Google Scholar 

  • Cardozo T, Pagano M . (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5: 739–751.

    Article  CAS  PubMed  Google Scholar 

  • Carrano AC, Eytan E, Hershko A, Pagano M . (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1: 193–199.

    Article  CAS  PubMed  Google Scholar 

  • Cha H, Hancock C, Dangi S, Maiguel D, Carrier F, Shapiro P . (2004). Phosphorylation regulates nucleophosmin targeting to the centrosome during mitosis as detected by cross-reactive phosphorylation-specific MKK1/MKK2 antibodies. Biochem J 378: 857–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Heath V, O'Garra A, Johnston J, McMahon M . (1999). Sustained activation of the raf-MEK-ERK pathway elicits cytokine unresponsiveness in T cells. J Immunol 163: 5796–5805.

    CAS  PubMed  Google Scholar 

  • Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM et al. (1999). The p21(Cip1) and p27(Kip1) CDK ’inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18: 1571–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng M, Sexl V, Sherr CJ, Roussel MF . (1998). Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA 95: 1091–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claassen GF, Hann SR . (2000). A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest. Proc Natl Acad Sci USA 97: 9498–9503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    Article  CAS  PubMed  Google Scholar 

  • Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN et al. (2000). Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA 97: 3260–3265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon I, Raff M . (1999). Size control in animal development. Cell 96: 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Cook SJ, Aziz N, McMahon M . (1999). The repertoire of fos and jun proteins expressed during the G1 phase of the cell cycle is determined by the duration of mitogen-activated protein kinase activation. Mol Cell Biol 19: 330–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook SJ, McCormick F . (1996). Kinetic and biochemical correlation between sustained p44ERK1 (44 kDa extracellular signal-regulated kinase 1) activation and lysophosphatidic acid-stimulated DNA synthesis in Rat-1 cells. Biochem J 320 (Part 1): 237–245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JA, Sefton BM, Hunter T . (1984). Diverse mitogenic agents induce the phosphorylation of two related 42, 000-dalton proteins on tyrosine in quiescent chick cells. Mol Cell Biol 4: 30–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corradetti MN, Guan KL . (2006). Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25: 6347–6360.

    Article  CAS  PubMed  Google Scholar 

  • Cowley S, Paterson H, Kemp P, Marshall CJ . (1994). Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77: 841–852.

    Article  CAS  PubMed  Google Scholar 

  • Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL . (2005). eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR. J Cell Biol 169: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmas C, Manenti S, Boudjelal A, Peyssonnaux C, Eychene A, Darbon JM . (2001). The p42/p44 mitogen-activated protein kinase activation triggers p27Kip1 degradation independently of CDK2/cyclin E in NIH 3T3 cells. J Biol Chem 276: 34958–34965.

    Article  CAS  PubMed  Google Scholar 

  • DeSilva DR, Jones EA, Favata MF, Jaffee BD, Magolda RL, Trzaskos JM et al. (1998). Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. J Immunol 160: 4175–4181.

    CAS  PubMed  Google Scholar 

  • Dever TE . (2002). Gene-specific regulation by general translation factors. Cell 108: 545–556.

    Article  CAS  PubMed  Google Scholar 

  • Dey A, She H, Kim L, Boruch A, Guris DL, Carlberg K et al. (2000). Colony-stimulating factor-1 receptor utilizes multiple signaling pathways to induce cyclin D2 expression. Mol Biol Cell 11: 3835–3848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl JA, Yang W, Rimerman RA, Xiao H, Emili A . (2003). Hsc70 regulates accumulation of cyclin D1 and cyclin D1-dependent protein kinase. Mol Cell Biol 23: 1764–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR . (1995). A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92: 7686–7689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebisuya M, Kondoh K, Nishida E . (2005). The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 118: 2997–3002.

    Article  CAS  PubMed  Google Scholar 

  • Edelmann HM, Kuhne C, Petritsch C, Ballou LM . (1996). Cell cycle regulation of p70 S6 kinase and p42/p44 mitogen-activated protein kinases in Swiss mouse 3T3 fibroblasts. J Biol Chem 271: 963–971.

    Article  CAS  PubMed  Google Scholar 

  • Evans DR, Guy HI . (2004). Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 279: 33035–33038.

    Article  CAS  PubMed  Google Scholar 

  • Fanton CP, McMahon M, Pieper RO . (2001). Dual growth arrest pathways in astrocytes and astrocytic tumors in response to Raf-1 activation. J Biol Chem 276: 18871–18877.

    Article  CAS  PubMed  Google Scholar 

  • Filmus J, Robles AI, Shi W, Wong MJ, Colombo LL, Conti CJ . (1994). Induction of cyclin D1 overexpression by activated ras. Oncogene 9: 3627–3633.

    CAS  PubMed  Google Scholar 

  • Fingar DC, Blenis J . (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23: 3151–3171.

    Article  CAS  PubMed  Google Scholar 

  • Fischer AM, Katayama CD, Pages G, Pouyssegur J, Hedrick SM . (2005). The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23: 431–443.

    Article  CAS  PubMed  Google Scholar 

  • Flynn A, Proud CG . (1996). Insulin and phorbol ester stimulate initiation factor eIF-4E phosphorylation by distinct pathways in Chinese hamster ovary cells overexpressing the insulin receptor. Eur J Biochem 236: 40–47.

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga R, Hunter T . (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16: 1921–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galaktionov K, Chen X, Beach D . (1996). Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382: 511–517.

    Article  CAS  PubMed  Google Scholar 

  • Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M et al. (2001). The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)- mediated ubiquitinylation of p27. Nat Cell Biol 3: 321–324.

    Article  CAS  PubMed  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Bronson RT, Sicinski P . (2001). Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc Natl Acad Sci USA 98: 194–199.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Cambronero J . (1999). p42-MAP kinase is activated in EGF-stimulated interphase but not in metaphase-arrested HeLa cells. FEBS Lett 443: 126–130.

    Article  CAS  PubMed  Google Scholar 

  • Gotoh I, Fukuda M, Adachi M, Nishida E . (1999). Control of the cell morphology and the S phase entry by mitogen- activated protein kinase kinase. A regulatory role of its n-terminal region. J Biol Chem 274: 11874–11880.

    Article  CAS  PubMed  Google Scholar 

  • Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN et al. (2005). c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 7: 311–318.

    Article  CAS  PubMed  Google Scholar 

  • Graves LM, Guy HI, Kozlowski P, Huang M, Lazarowski E, Pope RM et al. (2000). Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 403: 328–332.

    Article  CAS  PubMed  Google Scholar 

  • Greulich H, Erikson RL . (1998). An analysis of Mek1 signaling in cell proliferation and transformation. J Biol Chem 273: 13280–13288.

    Article  CAS  PubMed  Google Scholar 

  • Gysin S, Lee SH, Dean NM, McMahon M . (2005). Pharmacologic inhibition of RAFMEKERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Res 65: 4870–4880.

    Article  CAS  PubMed  Google Scholar 

  • Han J, Tsukada Y, Hara E, Kitamura N, Tanaka T . (2005). Hepatocyte growth factor induces redistribution of p21(CIP1) and p27(KIP1) through ERK-dependent p16(INK4a) up-regulation, leading to cell cycle arrest at G1 in HepG2 hepatoma cells. J Biol Chem 280: 31548–31556.

    Article  CAS  PubMed  Google Scholar 

  • Harbour JW, Dean DC . (2000). The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14: 2393–2409.

    Article  CAS  PubMed  Google Scholar 

  • Harding A, Giles N, Burgess A, Hancock JF, Gabrielli BG . (2003). Mechanism of mitosis-specific activation of MEK1. J Biol Chem 278: 16747–16754.

    Article  CAS  PubMed  Google Scholar 

  • Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N et al. (2003). Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells 8: 847–856.

    Article  CAS  PubMed  Google Scholar 

  • Hay N, Sonenberg N . (2004). Upstream and downstream of mTOR. Genes Dev 18: 1926–1945.

    Article  CAS  PubMed  Google Scholar 

  • Hayne C, Tzivion G, Luo Z . (2000). Raf-1/MEK/MAPK pathway is necessary for the G2/M transition induced by nocodazole. J Biol Chem 275: 31876–31882.

    Article  CAS  PubMed  Google Scholar 

  • Hayne C, Xiang X, Luo Z . (2004). MEK inhibition and phosphorylation of serine 4 on B23 are two coincident events in mitosis. Biochem Biophys Res Commun 321: 675–680.

    Article  CAS  PubMed  Google Scholar 

  • Herber B, Truss M, Beato M, Muller R . (1994). Inducible regulatory elements in the human cyclin D1 promoter. Oncogene 9: 2105–2107.

    CAS  PubMed  Google Scholar 

  • Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ et al. (2000). Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA 97: 2229–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill CS, Treisman R . (1995). Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80: 199–211.

    Article  CAS  PubMed  Google Scholar 

  • Hsu JY, Reimann JD, Sorensen CS, Lukas J, Jackson PK . (2002). E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol 4: 358–366.

    Article  CAS  PubMed  Google Scholar 

  • Jones SM, Kazlauskas A . (2001). Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol 3: 165–172.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen P, Tyers M . (2004). How cells coordinate growth and division. Curr Biol 14: R1014–R1027.

    Article  CAS  PubMed  Google Scholar 

  • Kahan C, Seuwen K, Meloche S, Pouyssegur J . (1992). Coordinate, biphasic activation of p44 mitogen-activated protein kinase and S6 kinase by growth factors in hamster fibroblasts. Evidence for thrombin-induced signals different from phosphoinositide turnover and adenylylcyclase inhibition. J Biol Chem 267: 13369–13375.

    Article  CAS  PubMed  Google Scholar 

  • Karpova AY, Abe MK, Li J, Liu PT, Rhee JM, Kuo WL et al. (1997). MEK1 is required for PDGF-induced ERK activation and DNA synthesis in tracheal myocytes. Am J Physiol 272: L558–L565.

    CAS  PubMed  Google Scholar 

  • Kawada M, Yamagoe S, Murakami Y, Suzuki K, Mizuno S, Uehara Y . (1997). Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene 15: 629–637.

    Article  CAS  PubMed  Google Scholar 

  • Kerkhoff E, Rapp UR . (1997). Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol Cell Biol 17: 2576–2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerkhoff E, Rapp UR . (1998). High-intensity Raf signals convert mitotic cell cycling into cellular growth. Cancer Res 58: 1636–1640.

    CAS  PubMed  Google Scholar 

  • Knauf JA, Ouyang B, Knudsen ES, Fukasawa K, Babcock G, Fagin JA . (2006). Oncogenic RAS induces accelerated transition through G2/M and promotes defects in the G2 DNA damage and mitotic spindle checkpoints. J Biol Chem 281: 3800–3809.

    Article  CAS  PubMed  Google Scholar 

  • Kohno M . (1985). Diverse mitogenic agents induce rapid phosphorylation of a common set of cellular proteins at tyrosine in quiescent mammalian cells. J Biol Chem 260: 1771–1779.

    Article  CAS  PubMed  Google Scholar 

  • Kohno M, Pouyssegur J . (1986). Alpha-thrombin-induced tyrosine phosphorylation of 43,000- and 41,000-Mr proteins is independent of cytoplasmic alkalinization in quiescent fibroblasts. Biochem J 238: 451–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS et al. (1997). New functional activities for the p21 family of CDK inhibitors. Genes Dev 11: 847–862.

    Article  CAS  PubMed  Google Scholar 

  • Ladha MH, Lee KY, Upton TM, Reed MF, Ewen ME . (1998). Regulation of exit from quiescence by p27 and cyclin D1-CDK4. Mol Cell Biol 18: 6605–6615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai HK, Borden KL . (2000). The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene 19: 1623–1634.

    Article  CAS  PubMed  Google Scholar 

  • Lavoie JN, L'Allemain G, Brunet A, Muller R, Pouyssegur J . (1996). Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271: 20608–20616.

    Article  CAS  PubMed  Google Scholar 

  • Lenferink AE, Simpson JF, Shawver LK, Coffey RJ, Forbes JT, Arteaga CL . (2000). Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu + MMTV/TGF-alpha bigenic mice. Proc Natl Acad Sci USA 97: 9609–9614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis TS, Shapiro PS, Ahn NG . (1998). Signal transduction through MAP kinase cascades. Adv Cancer Res 74: 49–139.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jenkins CW, Nichols MA, Xiong Y . (1994). Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9: 2261–2268.

    CAS  PubMed  Google Scholar 

  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW . (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12: 3008–3019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN et al. (2004). MEK1–ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109: 1938–1941.

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Chao JR, Jiang MC, Ng SY, Yen JJ, Yang-Yen HF . (1995). Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol Cell Biol 15: 3654–3663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Yan S, Zhou T, Terada Y, Erikson RL . (2004). The MAP kinase pathway is required for entry into mitosis and cell survival. Oncogene 23: 763–776.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Martindale JL, Gorospe M, Holbrook NJ . (1996). Regulation of p21WAF1/CIP1 expression through mitogen-activated protein kinase signaling pathway. Cancer Res 56: 31–35.

    CAS  PubMed  Google Scholar 

  • Lloyd AC . (1998). Ras versus cyclin-dependent kinase inhibitors. Curr Opin Genet Dev 8: 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd AC, Obermuller F, Staddon S, Barth CF, McMahon M, Land H . (1997). Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev 11: 663–677.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193.

    Article  CAS  PubMed  Google Scholar 

  • Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K et al. (1995). p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9: 935–944.

    Article  CAS  PubMed  Google Scholar 

  • Maekawa M, Nishida E, Tanoue T . (2002). Identification of the anti-proliferative protein Tob as a MAPK substrate. J Biol Chem 277: 37783–37787.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2001). To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Perez De Castro I, Hernandez MI, Jimenez M, Corral T, Pellicer A . (2000). Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol 20: 2915–2925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N . (2004). eIF4E – from translation to transformation. Oncogene 23: 3172–3179.

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC . (2003). Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 28: 573–576.

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Grummt I . (2006). Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25: 6384–6391.

    Article  CAS  PubMed  Google Scholar 

  • Meloche S . (1995). Cell cycle reentry of mammalian fibroblasts is accompanied by the sustained activation of p44mapk and p42mapk isoforms in the G1 phase and their inactivation at the G1/S transition. J Cell Physiol 163: 577–588.

    Article  CAS  PubMed  Google Scholar 

  • Meloche S, Seuwen K, Pages G, Pouyssegur J . (1992). Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity. Mol Endocrinol 6: 845–854.

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    Article  CAS  PubMed  Google Scholar 

  • Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D . (1994). Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 54: 3391–3395.

    CAS  PubMed  Google Scholar 

  • Mirza AM, Gysin S, Malek N, Nakayama K, Roberts JM, McMahon M . (2004). Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol 24: 10868–10881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan DO . (2007). The Cell Cycle: Principles of Control. New Science Press Ltd: London, UK.

    Google Scholar 

  • Morley SJ, McKendrick L . (1997). Involvement of stress-activated protein kinase and p38/RK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T3 cells. J Biol Chem 272: 17887–17893.

    Article  CAS  PubMed  Google Scholar 

  • Murphy LO, MacKeigan JP, Blenis J . (2004). A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol 24: 144–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J . (2002). Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4: 556–564.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura KD, Martinez R, Weber MJ . (1983). Tyrosine phosphorylation of specific proteins after mitogen stimulation of chicken embryo fibroblasts. Mol Cell Biol 3: 380–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama K, Nakayama K . (1998). Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine during development. BioEssays 20: 1020–1029.

    Article  CAS  PubMed  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR . (1994). Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98.

    Article  CAS  PubMed  Google Scholar 

  • Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V et al. (1995). Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269: 682–685.

    Article  CAS  PubMed  Google Scholar 

  • Pages G, Guerin S, Grall D, Bonino F, Smith A, Anjuere F et al. (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286: 1374–1377.

    Article  CAS  PubMed  Google Scholar 

  • Pages G, Lenormand P, L'Allemain G, Chambard JC, Meloche S, Pouyssegur J . (1993). Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 90: 8319–8323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153–183.

    CAS  PubMed  Google Scholar 

  • Pelengaris S, Khan M, Evan G . (2002). c-MYC: more than just a matter of life and death. Nat Rev Cancer 2: 764–776.

    Article  CAS  PubMed  Google Scholar 

  • Peters JM . (2002). The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9: 931–943.

    Article  CAS  PubMed  Google Scholar 

  • Piatelli MJ, Doughty C, Chiles TC . (2002). Requirement for a hsp90 chaperone-dependent MEK1/2–ERK pathway for B cell antigen receptor-induced cyclin D2 expression in mature B lymphocytes. J Biol Chem 277: 12144–12150.

    Article  CAS  PubMed  Google Scholar 

  • Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J et al. (2005). Global analysis of protein phosphorylation in yeast. Nature 438: 679–684.

    Article  CAS  PubMed  Google Scholar 

  • Pumiglia KM, Decker SJ . (1997). Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 94: 448–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi RK, Weber E, McMahon M, Williams JR, Baylin S, Mal A et al. (1998). Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest 101: 153–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivard N, Boucher MJ, Asselin C, L'Allemain G . (1999). MAP kinase cascade is required for p27 downregulation and S phase entry in fibroblasts and epithelial cells. Am J Physiol 277: C652–C664.

    Article  CAS  PubMed  Google Scholar 

  • Roberts EC, Shapiro PS, Nahreini TS, Pages G, Pouyssegur J, Ahn NG . (2002). Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol Cell Biol 22: 7226–7241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roovers K, Assoian RK . (2000). Integrating the MAP kinase signal into the G1 phase cell cycle machinery. BioEssays 22: 818–826.

    Article  CAS  PubMed  Google Scholar 

  • Roovers K, Davey G, Zhu X, Bottazzi ME, Assoian RK . (1999). Alpha5beta1 integrin controls cyclin D1 expression by sustaining mitogen-activated protein kinase activity in growth factor-treated cells. Mol Biol Cell 10: 3197–3204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roper E, Weinberg W, Watt FM, Land H . (2001). p19ARF-independent induction of p53 and cell cycle arrest by Raf in murine keratinocytes. EMBO Rep 2: 145–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ et al. (1995). Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 270: 21176–21180.

    Article  CAS  PubMed  Google Scholar 

  • Rossant J, Cross JC . (2001). Placental development: lessons from mouse mutants. Nat Rev Genet 2: 538–548.

    Article  CAS  PubMed  Google Scholar 

  • Rossomando AJ, Payne DM, Weber MJ, Sturgill TW . (1989). Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci USA 86: 6940–6943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossomando AJ, Sanghera JS, Marsden LA, Weber MJ, Pelech SL, Sturgill TW . (1991). Biochemical characterization of a family of serine/threonine protein kinases regulated by tyrosine and serine/threonine phosphorylations. J Biol Chem 266: 20270–20275.

    Article  CAS  PubMed  Google Scholar 

  • Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N . (1996). Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 93: 1065–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . (2004). Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101: 13489–13494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saba-El-Leil MK, Vella FD, Vernay B, Voisin L, Chen L, Labrecque N et al. (2003). An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep 4: 964–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakakibara K, Kubota K, Worku B, Ryer EJ, Miller JP, Koff A et al. (2005). PDGF-BB regulates p27 expression through ERK-dependent RNA turn-over in vascular smooth muscle cells. J Biol Chem 280: 25470–25477.

    Article  CAS  PubMed  Google Scholar 

  • Sale EM, Atkinson PG, Sale GJ . (1995). Requirement of MAP kinase for differentiation of fibroblasts to adipocytes, for insulin activation of p90 S6 kinase and for insulin or serum stimulation of DNA synthesis. EMBO J 14: 674–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheper GC, Proud CG . (2002). Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 269: 5350–5359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14: 2501–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC et al. (1999). Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 5: 810–816.

    Article  CAS  PubMed  Google Scholar 

  • Sebolt-Leopold JS, Herrera R . (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4: 937–947.

    Article  CAS  PubMed  Google Scholar 

  • Seger R, Seger D, Reszka AA, Munar ES, Eldar-Finkelman H, Dobrowolska G et al. (1994). Overexpression of mitogen-activated protein kinase kinase (MAPKK) and its mutants in NIH 3T3 cells. Evidence that MAPKK involvement in cellular proliferation is regulated by phosphorylation of serine residues in its kinase subdomains VII and VIII. J Biol Chem 269: 25699–25709.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Servant MJ, Giasson E, Meloche S . (1996). Inhibition of growth factor-induced protein synthesis by a selective MEK inhibitor in aortic smooth muscle cells. J Biol Chem 271: 16047–16052.

    Article  CAS  PubMed  Google Scholar 

  • Seufferlein T, Withers DJ, Rozengurt E . (1996). Reduced requirement of mitogen-activated protein kinase (MAPK) activity for entry into the S phase of the cell cycle in Swiss 3T3 fibroblasts stimulated by bombesin and insulin. J Biol Chem 271: 21471–21477.

    Article  CAS  PubMed  Google Scholar 

  • Sewing A, Wiseman B, Lloyd AC, Land H . (1997). High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 17: 5588–5597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro PS, Vaisberg E, Hunt AJ, Tolwinski NS, Whalen AM, McIntosh JR et al. (1998). Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen. J Cell Biol 142: 1533–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE . (1997). Cyclin E–CDK2 is a regulator of p27Kip1. Genes Dev 11: 1464–1478.

    Article  CAS  PubMed  Google Scholar 

  • Sheikh MS, Li XS, Chen JC, Shao ZM, Ordonez JV, Fontana JA . (1994). Mechanisms of regulation of WAF1/Cip1 gene expression in human breast carcinoma: role of p53-dependent and independent signal transduction pathways. Oncogene 9: 3407–3415.

    CAS  PubMed  Google Scholar 

  • Sherr CJ . (2000). The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60: 3689–3695.

    CAS  PubMed  Google Scholar 

  • Shinohara M, Mikhailov AV, Aguirre-Ghiso JA, Rieder CL . (2006). Extracellular signal-regulated kinase 1/2 Activity is not required in mammalian cells during late G2 for timely entry into or exit from mitosis. Mol Biol Cell 17: 5227–5240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek W et al. (2001). A CDK-independent function of mammalian Cks1. Targeting of SCF(Skp2) to the CDK inhibitor p27(Kip1). Mol Cell 7: 639–650.

    Article  CAS  PubMed  Google Scholar 

  • Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T . (2001). An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol Cell 8: 1063–1073.

    Article  CAS  PubMed  Google Scholar 

  • Strudwick S, Borden KL . (2002). The emerging roles of translation factor eIF4E in the nucleus. Differentiation 70: 10–22.

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Tonks NK, Bar-Sagi D . (1994). Inhibition of Ras-induced DNA synthesis by expression of the phosphatase MKP-1. Science 266: 285–288.

    Article  CAS  PubMed  Google Scholar 

  • Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U et al. (1999). p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1: 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, J KT, Ajima R, Nakamura T, Yoshida Y, Yamamoto T . (2002). Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation. Genes Dev 16: 1356–1370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takenaka K, Moriguchi T, Nishida E . (1998). Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 280: 599–602.

    Article  CAS  PubMed  Google Scholar 

  • Takuwa N, Takuwa Y . (1997). Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol 17: 5348–5358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talarmin H, Rescan C, Cariou S, Glaise D, Zanninelli G, Bilodeau M et al. (1999). The mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade activation is a key signalling pathway involved in the regulation of G(1) phase progression in proliferating hepatocytes. Mol Cell Biol 19: 6003–6011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamemoto H, Kadowaki T, Tobe K, Ueki K, Izumi T, Chatani Y et al. (1992). Biphasic activation of two mitogen-activated protein kinases during the cell cycle in mammalian cells. J Biol Chem 267: 20293–20297.

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B et al. (2002). ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 277: 12710–12717.

    Article  CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F . (2003). Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3: 233–245.

    Article  CAS  PubMed  Google Scholar 

  • Tombes RM, Auer KL, Mikkelsen R, Valerie K, Wymann MP, Marshall CJ et al. (1998). The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochem J 330 (Part 3): 1451–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong W, Pollard JW . (2001). Genetic evidence for the interactions of cyclin D1 and p27(Kip1) in mice. Mol Cell Biol 21: 1319–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topisirovic I, Capili AD, Borden KL . (2002). Gamma interferon and cadmium treatments modulate eukaryotic initiation factor 4E-dependent mRNA transport of cyclin D1 in a PML-dependent manner. Mol Cell Biol 22: 6183–6198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topisirovic I, Ruiz-Gutierrez M, Borden KL . (2004). Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 64: 8639–8642.

    Article  CAS  PubMed  Google Scholar 

  • Treinies I, Paterson HF, Hooper S, Wilson R, Marshall CJ . (1999). Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal to stimulate DNA synthesis. Mol Cell Biol 19: 321–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H . (1999). p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9: 661–664.

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R . (2004). Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24: 6539–6549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R . (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol 5: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlach J, Hennecke S, Amati B . (1997). Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 16: 5334–5344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA . (1997). Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16: 1909–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA . (1999). Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 19: 1871–1880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber JD, Hu W, Jefcoat Jr SC, Raben DM, Baldassare JJ . (1997a). Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J Biol Chem 272: 32966–32971.

    Article  CAS  PubMed  Google Scholar 

  • Weber JD, Raben DM, Phillips PJ, Baldassare JJ . (1997b). Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J 326 (Part 1): 61–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh AJ, Davis RJ . (1996). Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74: 589–607.

    Article  CAS  PubMed  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL . (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180.

    Article  CAS  PubMed  Google Scholar 

  • Willard FS, Crouch MF . (2001). MEK, ERK, and p90RSK are present on mitotic tubulin in Swiss 3T3 cells: a role for the MAP kinase pathway in regulating mitotic exit. Cell Signal 13: 653–664.

    Article  CAS  PubMed  Google Scholar 

  • Williams DH, Wilkinson SE, Purton T, Lamont A, Flotow H, Murray EJ . (1998). Ro 09-2210 exhibits potent anti-proliferative effects on activated T cells by selectively blocking MKK activity. Biochemistry 37: 9579–9585.

    Article  CAS  PubMed  Google Scholar 

  • Winston JT, Coats SR, Wang YZ, Pledger WJ . (1996). Regulation of the cell cycle machinery by oncogenic ras. Oncogene 12: 127–134.

    CAS  PubMed  Google Scholar 

  • Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . (1997). Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17: 5598–5611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright JH, Munar E, Jameson DR, Andreassen PR, Margolis RL, Seger R et al. (1999). Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc Natl Acad Sci USA 96: 11335–11340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN . (2006). TOR signaling in growth and metabolism. Cell 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E . (2006). Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr Biol 16: 1171–1182.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH . (2005). BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 24: 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Zhou BP, Hung MC, Lee MH . (2000). Oncogenic signals of HER-2/neu in regulating the stability of the cyclin-dependent kinase inhibitor p27. J Biol Chem 275: 24735–24739.

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Li W, Wu J, Germann UA, Su MS, Kuida K et al. (2003). Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci USA 100: 12759–12764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon S, Seger R . (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24: 21–44.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Nakamura T, Komoda M, Satoh H, Suzuki T, Tsuzuku JK et al. (2003). Mice lacking a transcriptional corepressor Tob are predisposed to cancer. Genes Dev 17: 1201–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecevic M, Catling AD, Eblen ST, Renzi L, Hittle JC, Yen TJ et al. (1998). Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol 142: 1547–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller KI, Jegga AG, Aronow BJ, O'Donnell KA, Dang CV . (2003). An integrated database of genes responsive to the myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4: R69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zezula J, Sexl V, Hutter C, Karel A, Schutz W, Freissmuth M . (1997). The cyclin-dependent kinase inhibitor p21cip1 mediates the growth inhibitory effect of phorbol esters in human venous endothelial cells. J Biol Chem 272: 29967–29974.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM . (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12: 2997–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S Meloche holds a Canada Research Chair in Cellular Signaling. Work in the author's laboratory was supported by grants from the National Cancer Institute of Canada, Canadian Institutes for Health Research and Cancer Research Society to SM, and by the Centre National de la Recherche Scientifique, Centre A Lacassagne, Ministère de l'Education, de la Recherche et de la Technologie, Ligue Nationale Contre le Cancer (Equipe labellisée) and Association pour la Recherche sur le Cancer to JP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Meloche or J Pouysségur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meloche, S., Pouysségur, J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26, 3227–3239 (2007). https://doi.org/10.1038/sj.onc.1210414

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210414

Keywords

This article is cited by

Search

Quick links