Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p16INK4A-silencing augments DNA damage-induced apoptosis in cervical cancer cells

Abstract

p16INK4A (p16) has been suggested to be an early biomarker for the detection of cervical cancer. However, its functional role in cervical cancer is not well characterized. In this study, we reported the consistent and significant upregulation of p16 in cervical cancer tissues when compared to both matched non-tumourous tissues of the same patient and normal cervical tissues from non-cancer patients. We have employed p16 small interfering RNA (siRNA) to dissect the role of p16 in cervical carcinogenesis. Although the silencing of p16 was accompanied by the upregulation of p53, p21 and RB in the p16 siRNA-transfected cells, no significant effect on cell cycle progression was observed. When the p16 siRNA-silenced cells were subjected to DNA damage stress including ultraviolet-irradiation and cisplatin treatments, a significantly higher percentage of apoptotic cells could be observed in the p16-siRNA silenced cells compared to control siRNA-treated cells. Moreover, induction of apoptosis was associated with the activation of p53 through phosphorylation, and this process, when studied by gene profiling experiments, involved both the intrinsic and extrinsic apoptotic pathways. The observation that silencing of p16 expression augments DNA damage-induced apoptosis in cervical cancer cells offers alternative strategies for anti-cancer therapies for human cervical cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Andersson S, Hansson B, Norman I, Gaberi V, Mints M, Hjerpe A et al. (2006). Expression of E6/E7 mRNA from ‘high risk’ human papillomavirus in relation to CIN grade, viral load and p16INK4a. Int J Oncol 29: 705–711.

    CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Butz K, Shahabeddin L, Geisen C, Spitkovsky D, Ullmann A, Hoppe-Seyler F . (1995). Functional p53 protein in human papillomavirus-positive cancer cells. Oncogene 10: 927–936.

    CAS  PubMed  Google Scholar 

  • Cheng Q, Lau WM, Tay SK, Chew SH, Ho TH, Hui KM . (2002). Identification and characterization of genes involved in the carcinogenesis of human squamous cell cervical carcinoma. Int J Cancer 98: 419–426.

    Article  CAS  PubMed  Google Scholar 

  • Demers GW, Foster SA, Halbert CL, Galloway DA . (1994). Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc Natl Acad Sci USA 91: 4382–4386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J et al. (1994). WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174.

    CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Freedman DA, Levine AJ . (1998). Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18: 7288–7293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giarre M, Caldeira S, Malanchi I, Ciccolini F, Leao MJ, Tommasino M . (2001). Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. J Virol 75: 4705–4712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin EC, DiMaio D . (2000). Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA 97: 12513–12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin EC, Yang E, Lee CJ, Lee HW, DiMaio D, Hwang ES . (2000). Rapid induction of senescence in human cervical carcinoma cells. Proc Natl Acad Sci USA 97: 10978–10983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Putral L, Hengst K, Minto K, Saunders NA, Leggatt G et al. (2006). Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther 13: 1023–1032.

    Article  CAS  PubMed  Google Scholar 

  • Haapajarvi T, Kivinen L, Heiskanen A, des Bordes C, Datto MB, Wang XF et al. (1999). UV radiation is a transcriptional inducer of p21(Cip1/Waf1) cyclin-kinase inhibitor in a p53-independent manner. Exp Cell Res 248: 272–279.

    Article  CAS  PubMed  Google Scholar 

  • Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT . (1989). HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8: 3905–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Fujii T, Saito M, Nindl I, Ono A, Kubushiro K et al. (2006). Overexpression of p16 INK4a as an indicator for human papillomavirus oncogenic activity in cervical squamous neoplasia. Int J Gynecol Cancer 16: 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Milner J . (2002). Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21: 6041–6048.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez GS, Khan SH, Stommel JM, Wahl GM . (1999). p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene 18: 7656–7665.

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Munger K . (1997). Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J Virol 71: 2905–2912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV et al. (1994). A cell cycle regulator potentially involved in genesis of many tumor types. Science 264: 436–440.

    Article  CAS  PubMed  Google Scholar 

  • Kanao H, Enomoto T, Ueda Y, Fujita M, Nakashima R, Ueno Y et al. (2004). Correlation between p14(ARF)/p16(INK4A) expression and HPV infection in uterine cervical cancer. Cancer Lett 213: 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U et al. (2001). Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92: 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Wan J, Kim BJ, Bae MA, Song BJ . (2006). Ubiquitin-dependent degradation of p53 protein despite phosphorylation at its N terminus by acetaminophen. J Pharmacol Exp Ther 317: 202–208.

    Article  CAS  PubMed  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M et al. (1998). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188: 2033–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munger K, Scheffner M, Huibregtse JM, Howley PM . (1992). Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 12: 197–217.

    CAS  PubMed  Google Scholar 

  • Nevins JR . (1992). E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–429.

    Article  CAS  PubMed  Google Scholar 

  • Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA . (1994). Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753–756.

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T et al. (2000). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102: 849–862.

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM, Bray FI, Devesa SS . (2001). Cancer burden in the year 2000. The global picture. Eur J Cancer 37: S4–S66.

    PubMed  Google Scholar 

  • Putral LN, Bywater MJ, Gu W, Saunders NA, Gabrielli BG, Leggatt GR et al. (2005). RNA interference against human papillomavirus oncogenes in cervical cancer cells results in increased sensitivity to cisplatin. Mol Pharmacol 68: 1311–1319.

    Article  CAS  PubMed  Google Scholar 

  • Queiroz C, Silva TC, Alves VA, Villa LL, Costa MC, Travassos AG et al. (2006). P16(INK4a) expression as a potential prognostic marker in cervical pre-neoplastic and neoplastic lesions. Pathol Res Pract 202: 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T . (1998). Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions. Am J Pathol 153: 1741–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffner M, Munger K, Byrne JC, Howley PM . (1991). The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA 88: 5523–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro GI, Edwards CD, Ewen ME, Rollins BJ . (1998). p16INK4A participates in a G1 arrest checkpoint in response to DNA damage. Mol Cell Biol 18: 378–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C . (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Slebos RJ, Lee MH, Plunkett BS, Kessis TD, Williams BO, Jacks T et al. (1994). p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc Natl Acad Sci USA 91: 5320–5324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smotkin D, Wettstein FO . (1986). Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci USA 83: 4680–4684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Kumakura S, Uchida M, Barrett JC, Tsutsui T . (2003). Immortalization of normal human embryonic fibroblasts by introduction of either the human papillomavirus type 16 E6 or E7 gene alone. Int J Cancer 106: 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Pickering CR, Holst CR, Gauthier ML, Tlsty TD . (2006). p16INK4a modulates p53 in primary human mammary epithelial cells. Cancer Res 66: 10325–10331.

    Article  CAS  PubMed  Google Scholar 

  • zur Hausen H . (1996). Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta 1288: F55–78.

    PubMed  Google Scholar 

  • zur Hausen H . (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–350.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K M Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, W., Ho, T. & Hui, K. p16INK4A-silencing augments DNA damage-induced apoptosis in cervical cancer cells. Oncogene 26, 6050–6060 (2007). https://doi.org/10.1038/sj.onc.1210405

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210405

Keywords

This article is cited by

Search

Quick links