Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear colocalization and interaction between bcl-xL and cdk1(cdc2) during G2/M cell-cycle checkpoint

Abstract

In response to cancer chemotherapeutic drugs, cells rapidly trigger the apoptotic program or undergo growth arrest and senescence at specific phases of the cell cycle. Mitochondrial bcl-xL plays a central role in preventing alteration of mitochondrial dysfunction, cytochrome c release, caspase activation, DNA fragmentation and apoptosis. However, its pleitropic function depends on its subcellular localization. Here, we show that in addition to its mitochondrial effect that delays apoptosis, bcl-xL colocalizes and binds to cdk1(cdc2) during G2/M cell-cycle checkpoint and its overexpression stabilizes a G2/M-arrest senescence program in surviving cells after DNA damage. Bcl-xL potently inhibits cdk1(cdc2) kinase activity, which is reversible by a synthetic peptide between the 41st amino acid and 60th amino acid surrounding of the Thr47 and Ser62 phosphorylation sites, and Asn52 deamidation site, within the flexible loop domain of bcl-xL. A mutant deleted of this region does not alter the antiapoptotic function of bcl-xL, but impedes its effect on cdk1(cdc2) activity and on the G2/M-arrest senescence program after DNA damage. The nuclear interaction of bcl-xL and cdk1(cdc2) suggests that bcl-xL is coupled to the stabilization of a cell-cycle checkpoint induced by DNA damage, and this effect is genetically distinct from its function on apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

Ac-DEVD-AMC:

acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin

cdk(cdc):

cyclin-dependent kinase

cisPT:

cis-platinum (II) diamine dichloride

CPT:

20-S-camptothecin lactone

DEVDase:

Asp-Glu-Val-Asp protease

HA-tag:

hemagglutinin epitope tag sequences

PCR:

polymerase chain reaction

SDS–PAGE:

sodium dodecyl sulfate–polyacrylamide gel electrophoresis

TNF-α:

tumor necrosis factor alpha

VP-16:

etoposide

References

  • Barboule N, Truchet I, Valette A . (2005). Localization of phosphorylated forms of Bcl-2 in mitosis: co-localization with Ki-67 and nucleolin in nuclear structures and on mitotic chromosomes. Cell Cycle 4: 590–596.

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Haldar S . (2003). Identification of a novel Bcl-xL phosphorylation site regulating the sensitivity of taxol- or 2-methoxyestradiol-induced apoptosis. FEBS Lett 538: 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand R, O'Connor P, Kerrigan D, Pommier Y . (1992). Sequential administration of camptothecin and etoposide circumvents the antagonistic cytotoxicity of simultaneous drug administration in slowly growing human carcinoma, HT-29 cells. Eur J Cancer 28A: 743–748.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand R, Solary E, Jenkins J, Pommier Y . (1993). Apoptosis and its modulation in human promyelocytic HL-60 cells treated with DNA topoisomerase I and II inhibitors. Exp Cell Res 207: 388–397.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV, Giannakakou P, Eldeiry WS, Kingston DGI, Higgs PI, Neckers L et al. (1997). Raf-1/Bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 57: 130–135.

    CAS  PubMed  Google Scholar 

  • Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al. (1993). Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608.

    Article  CAS  PubMed  Google Scholar 

  • Booher RN, Holman PS, Fattaey A . (1997). Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem 272: 22300–22306.

    Article  CAS  PubMed  Google Scholar 

  • Borner C . (1996). Diminished cell proliferation associated with the death-protective activity of Bcl-2. J Biol Chem 271: 12695–12698.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Burri SH, Kim CN, Fang GF, Chang BS, Perkins C, Harris W et al. (1999). ‘Loop’ domain deletional mutant of Bcl-xL is as effective as p29Bcl-xL in inhibiting radiation-induced cytosolic accumulation of cytochrome C (cyt c), caspase-3 activity, and apoptosis. Int J Radiat Oncol Biol Phys 43: 423–430.

    Article  CAS  PubMed  Google Scholar 

  • Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y et al. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59: 3761–3767.

    CAS  PubMed  Google Scholar 

  • Cliby WA, Lewis KA, Lilly KK, Kaufmann SH . (2002). S phase and G2 arrests induced by topoisomerase I poisons are dependent on ATR kinase function. J Biol Chem 277: 1599–1606.

    Article  CAS  PubMed  Google Scholar 

  • Deverman BE, Cook BL, Manson SR, Niederhoff RA, Langer EM, Rosova I et al. (2002). Bcl-xL deamidation is a critical switch in the regulation of the response to DNA damage. Cell 111: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelly C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vitro. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domina AM, Smith JH, Craig RW . (2000). Myeloid cell leukemia 1 is phosphorylated through two distinct pathways, one associated with extracellular signal-regulated kinase activation and the other with G2/M accumulation or protein phosphatase 1/2A inhibition. J Biol Chem 275: 21688–21694.

    Article  CAS  PubMed  Google Scholar 

  • Draetta G, Beach D . (1988). Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54: 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Du L, Lyle CS, Chambers TC . (2005). Characterization of vinblastine-induced Bcl-xL and Bcl-2 phosphorylation: evidence for a novel protein kinase and a coordinated phosphorylation/dephosphorylation cycle associated with apoptosis induction. Oncogene 24: 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Du C, Stone AA, Gilbert KM, Chambers TC . (2000). Modulation of mitogen-activated protein kinases and phosphorylation of Bcl-2 by vinblastine represent persistent forms of normal fluctuations at G2-M. Cancer Res 60: 6403–6407.

    CAS  PubMed  Google Scholar 

  • Fujise K, Zhang D, Liu J, Yeh ET . (2000). Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen. J Biol Chem 275: 39458–39465.

    Article  CAS  PubMed  Google Scholar 

  • Furnari B, Rhind N, Russell P . (1997). Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277: 1495–1497.

    Article  CAS  PubMed  Google Scholar 

  • Haldar S, Chintapalli J, Croce CM . (1996). Taxol induces Bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 56: 1253–1255.

    CAS  PubMed  Google Scholar 

  • Han Z, Wei W, Dunaway S, Darnowski JW, Calabresi P, Sedivy J et al. (2002). Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 277: 17154–17160.

    Article  CAS  PubMed  Google Scholar 

  • Holm C, Covey JM, Kerrigan D, Pommier Y . (1989). Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells. Cancer Res 49: 6365–6368.

    CAS  PubMed  Google Scholar 

  • Jamil S, Sobouti R, Hojabrpour P, Raj M, Kast J, Duronio V . (2005). A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth via interaction with Cdk1. Biochem J 387: 659–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamer I, Sarig R, Zaltsman Y, Niv H, Oberkovitz G, Regev L et al. (2005). Proapoptotic Bid is an ATM effector in the DNA-damage response. Cell 122: 593–603.

    Article  CAS  PubMed  Google Scholar 

  • Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q et al. (2000). Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 275: 322–327.

    Article  CAS  PubMed  Google Scholar 

  • Kluck RM, Bossywetzel E, Green DR, Newmeyer DD . (1997). The release of cytochrome C from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275: 1132–1136.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu K, Miyashita T, Hang H, Hopkins KM, Zheng W, Cuddeback S et al. (2000). Human homologue of S. pombe Rad9 interacts with Bcl-2/Bcl-xL and promotes apoptosis. Nat Cell Biol 2: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW . (1993). Mcl1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to Bcl-2. Proc Natl Acad Sci USA 90: 3516–3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC . (1993). Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53: 4701–4714.

    CAS  PubMed  Google Scholar 

  • Ling YH, Tornos C, Perez-Soler R . (1998). Phosphorylation of Bcl-2 is a marker of M phase events and not a determinant of apoptosis. J Biol Chem 273: 18984–18991.

    Article  CAS  PubMed  Google Scholar 

  • Lock RB . (1992). Inhibition of p34cdc2 kinase activation, p34cdc2 tyrosine dephosphorylation, and mitotic progression in Chinese hamster cells exposed to etoposide. Cancer Res 52: 1817–1822.

    CAS  PubMed  Google Scholar 

  • Lock RB, Ross WE . (1990). Inhibition of p34cdc2 kinase by etoposide or irradiation as a mechanism of G2 arrest in chinese hamster ovary cells. Cancer Res 50: 3761–3766.

    CAS  PubMed  Google Scholar 

  • Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HLA et al. (1998). Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281: 2027–2031.

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama S, Xu QL, Velours J, Reed JC . (1998). The mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell 1: 327–336.

    Article  CAS  PubMed  Google Scholar 

  • McGowan CH, Russell P . (1995). Cell cycle regulation of human WEE1. EMBO J 14: 2166–2175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meikrantz W, Gisselbrecht S, Tam SW, Schlegel R . (1994). Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci USA 91: 3754–3758.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meikrantz W, Schlegel R . (1996). Suppression of apoptosis by dominant negative mutants of cyclin-dependent protein kinases. J Biol Chem 271: 10205–10209.

    Article  CAS  PubMed  Google Scholar 

  • Minn AJ, Boise LH, Thompson CB . (1996). Expression of Bcl-X(L) and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev 10: 2621–2631.

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO . (1995). Principle of CDK regulation. Nature 374: 131–134.

    Article  CAS  PubMed  Google Scholar 

  • Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Nakayama K et al. (1995). Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267: 1506–1510.

    Article  CAS  PubMed  Google Scholar 

  • Mueller PR, Coleman TR, Kumagai A, Dunphy WG . (1995). Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270: 86–90.

    Article  CAS  PubMed  Google Scholar 

  • O'Connor PM, Ferris DK, Pagano M, Draaetta G, Pines J, Hunter T et al. (1993a). G2 delay induced by nitrogen mustard in human cells affects cyclin A/cdk2 and cyclin B1/cdc2-kinase complexes differently. J Biol Chem 268: 8298–8308.

    CAS  PubMed  Google Scholar 

  • O'Connor PM, Jackman J, Jondle D, Bhatia K, Magrath I, Kohn KW . (1993b). Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines. Cancer Res 53: 4776–4780.

    CAS  PubMed  Google Scholar 

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501–1505.

    Article  CAS  PubMed  Google Scholar 

  • Pines J, Hunter T . (1991). Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115: 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Poruchynsky MS, Wang EE, Rudin CM, Blagosklonny MV, Fojo T . (1998). Bcl-X(L) is phosphorylated in malignant cells following microtubule disruption. Cancer Res 58: 3331–3338.

    CAS  PubMed  Google Scholar 

  • Reed JC . (1998). Bcl-2 family proteins. Oncogene 17: 3225–3236.

    Article  PubMed  Google Scholar 

  • Robles SJ, Adami GR . (1998). Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16: 1113–1123.

    Article  CAS  PubMed  Google Scholar 

  • Saintigny Y, Dumay A, Lambert S, Lopez BS . (2001). A novel role for the Bcl-2 protein family: specific suppression of the RAD51 recombination pathway. EMBO J 20: 2596–2607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scatena CD, Stewart ZA, Mays D, Tang LJ, Keefer CJ, Leach SD et al. (1998). Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and Taxol-induced growth arrest. J Biol Chem 273: 30777–30784.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. (2002a). A senescence program controlled by p53 and p16(INK4a) contributes to the outcome of cancer therapy. Cell 109: 335–346.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C . (2006). CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 119: 4269–4275.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt E, Cimoli G, Steyaert A, Bertrand R . (1998a). Bcl-xL modulates apoptosis induced by anticancer drugs and delays DEVDase and DNA fragmentation-promoting activities. Exp Cell Res 240: 107–121.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt E, Paquet C, Beauchemin M, Dever-Bertrand J, Bertrand R . (2000). Characterization of Bax-σ, a novel cell death-inducing isoform of Bax. Biochem Biophys Res Commun 270: 868–879.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt E, Paquet C, Bergeron S, Bertrand R . (2002b). Interface between apoptosis and cell cycle regulation: implication for tumor proliferation and therapy. In: Pandalai Sg (ed). Recent Research Developments in Cancer, Vol. 4. Transworld Research Network: Trivandrum, pp 453–477.

    Google Scholar 

  • Schmitt E, Steyaert A, Cimoli G, Bertrand R . (1998b). Bax-alpha promotes apoptosis induced by cancer chemotherapy and accelerates the activation of caspase 3-like cysteine proteases in p53 double mutant B lymphoma Namalwa cells. Cell Death Differ 5: 506–516.

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Nishioka WK, Th'ng J, Bradbury EM, Litchfield DW, Greenberg AH . (1994). Premature p34cdc2 activation required for apoptosis. Science 263: 1143–1145.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Narita M, Tsujimoto Y . (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483–487.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, O'Connor PM, Kohn KW, Pommier Y . (1995). Unscheduled activation of cyclin B1/Cdc2 kinase in human promyelocytic leukemia cell line HL60 cells undergoing apoptosis induced by DNA damage. Cancer Res 55: 228–231.

    CAS  PubMed  Google Scholar 

  • Tsao Y-P, D'Arpa P, Liu LF . (1992). The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res 52: 1823–1829.

    CAS  PubMed  Google Scholar 

  • Vairo G, Innes KM, Adams JM . (1996). Bcl-2 has a cell cycle inhibitory function separable from its enhancement of cell survival. Oncogene 13: 1511–1519.

    CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB . (1999). Bcl-x(L) prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3: 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Waldman T, Lengauer C, Kinzler KW, Vogelstein B . (1996). Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Ichijo H, Korsmeyer SJ . (1999). Bcl-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19: 8469–8478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang NC, Hu ML . (2004). A fluorimetric method using fluorescein di-beta-D-galactopyranoside for quantifying the senescence-associated beta-galactosidase activity in human foreskin fibroblast Hs68 cells. Anal Biochem 325: 337–343.

    Article  CAS  PubMed  Google Scholar 

  • Yao SL, McKenna KA, Sharkis SJ, Bedi A . (1996). Requirement of p34(cdc2) kinase for apoptosis mediated by the Fas/Apo-1 receptor and Interleukin 1-beta-converting enzyme-related proteases. Cancer Res 56: 4551–4555.

    CAS  PubMed  Google Scholar 

  • Yu Q, Rose JH, Zhang H, Pommier Y . (2001). Antisense inhibition of Chk2/hCds1 expression attenuates DNA damage-induced S and G2 checkpoints and enhances apoptotic activity in HEK-293 cells. FEBS Lett 505: 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M et al. (1996). Mitochondrial control of nuclear apoptosis. J Exp Med 183: 1533–1544.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Forbes KC, Wu Z, Moreno S, Piwnica-Worms H, Enoch T . (1998). Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395: 507–510.

    Article  CAS  PubMed  Google Scholar 

  • Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ . (2005). A role for proapoptotic BID in the DNA-damage response. Cell 122: 579–591.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was initiated by a grant from the National Cancer Institute of Canada to RB, and completed under a grant from the Cancer Research Society Inc. to RB. ES obtained a fellowship from the Fonds de la recherche en santé du Québec. The editorial work of Mr Ovid Da Silva is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Bertrand.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, E., Beauchemin, M. & Bertrand, R. Nuclear colocalization and interaction between bcl-xL and cdk1(cdc2) during G2/M cell-cycle checkpoint. Oncogene 26, 5851–5865 (2007). https://doi.org/10.1038/sj.onc.1210396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210396

Keywords

This article is cited by

Search

Quick links