Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the major risk factors include chronic infections with the hepatitis B (HBV) or C (HCV) virus, and exposure to dietary aflatoxin B1 (AFB1) or alcohol consumption. Multiple genetic and epigenetic changes are involved in the molecular pathogenesis of HCC, for example, somatic mutations in the p53 tumor suppressor gene (TP53) and the activation of the WNT signal transduction pathway. AFB1 frequently induces G:C to T:A transversions at the third base in codon 249 of TP53 and cooperates with HBV in causing p53 mutations in HCC. The detection of TP53 mutant DNA in plasma is a biomarker of both AFB1 exposure and HCC risk. Chronic infection with HBV and HCV viruses, and oxyradical disorders including hemochromatosis, also generate reactive oxygen/nitrogen species that can both damage DNA and mutate cancer-related genes such as TP53. Certain mutant p53 proteins may exhibit a ‘gain of oncogenic function’. The p53 biological network is a key responder to this oxidative and nitrosative stress. Depending on the extent of the DNA damage, p53 regulates the transcription of protective antioxidant genes and with extensive DNA damage, transactivates pro-oxidant genes that contribute to apoptosis. The X gene of HBV (HBx) is the most common open reading frame integrated into the host genome in HCC and the integrated HBx is frequently mutated. Mutant HBx proteins still retain their ability to bind to p53, and attenuate DNA repair and p53-mediated apoptosis. In summary, both viruses and chemicals are implicated in the etiology of TP53 mutations during the molecular pathogenesis of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aguilar F, Harris CC, Sun T, Hollstein M, Cerutti P . (1994). Geographic variation of p53 mutational profile in nonmalignant human liver. Science 264: 1317–1319.

    CAS  PubMed  Google Scholar 

  • Aguilar F, Hussain SP, Cerutti P . (1993). Aflatoxin B1 induces the transversion of G → T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci USA 90: 8586–8590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amaro MJ, Bartolome J, Carreno V . (1999). Hepatitis B virus X protein transactivates the inducible nitric oxide synthase promoter. Hepatology 29: 915–923.

    CAS  PubMed  Google Scholar 

  • Ambs S, Bennett WP, Merriam WG, Ogunfusika MO, Oser SM, Harrington AM et al. (1999). Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst 91: 86–88.

    CAS  PubMed  Google Scholar 

  • Ambs S, Bennett WP, Merriam WG, Ogunfusika MO, Oser SM, Khan MA et al. (1998a). Vascular endothelial growth factor and nitric oxide synthase expression in human lung cancer and the relation to p53. Br J Cancer 78: 233–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambs S, Hussain SP, Harris CC . (1997). Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J 11: 443–448.

    CAS  PubMed  Google Scholar 

  • Ambs S, Ogunfusika MO, Merriam WG, Bennett WP, Billiar TR, Harris CC . (1998b). Upregulation of NOS2 expression in cancer-prone p53 knockout mice. Proc Natl Acad Sci USA 95: 8823–8828.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M et al. (2003). Regulation of cyclooxygenase-2 expression by the wnt and ras pathways. Cancer Res 63: 728–734.

    CAS  PubMed  Google Scholar 

  • Arbuthnot P, Capovilla A, Kew M . (2000). Putative role of hepatitis B virus X protein in hepatocarcinogenesis: effects on apoptosis, DNA repair, mitogen-activated protein kinase and JAK/STAT pathways. J Gastroenterol Hepatol 15: 357–368.

    CAS  PubMed  Google Scholar 

  • Becker SA, Lee TH, Butel JS, Slagle BL . (1998). Hepatitis B virus X protein interferes with cellular DNA repair. J Virol 72: 266–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MR, Evan GI, Schwartz SM . (1995). Apoptosis of rat vascular smooth muscle cells is regulated by p53-dependent and -independent pathways. Circ Res 77: 266–273.

    CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126: 107–120.

    CAS  PubMed  Google Scholar 

  • Bergsland EK . (2001). Molecular mechanisms underlying the development of hepatocellular carcinoma. Semin Oncol 28: 521–531.

    CAS  PubMed  Google Scholar 

  • Bredt DS, Snyder SH . (1994). Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63: 175–195.

    CAS  PubMed  Google Scholar 

  • Bressac B, Kew M, Wands J, Ozturk M . (1991). Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350: 429–431.

    CAS  PubMed  Google Scholar 

  • Buchanan FG, DuBois RN . (2006). Connecting COX-2 and Wnt in cancer. Cancer Cell 9: 6–8.

    CAS  PubMed  Google Scholar 

  • Budhu A, Forgues M, Ye QH, Jia LH, He P, Zanetti KA et al. (2006). Prediction of venous metastases, recurrence and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10: 99–111.

    CAS  PubMed  Google Scholar 

  • Budhu AS, Zipser B, Forgues M, Ye QH, Sun Z, Wang XW . (2005). The molecular signature of metastases of human hepatocellular carcinoma. Oncology 69 (Suppl 1): 23–27.

    CAS  PubMed  Google Scholar 

  • Buss P, Caviezel M, Lutz WK . (1990). Linear dose-response relationship for DNA adducts in rat liver from chronic exposure to aflatoxin B1. Carcinogenesis 11: 2133–2135.

    CAS  PubMed  Google Scholar 

  • Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS . (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310: 1504–1510.

    CAS  PubMed  Google Scholar 

  • Cerutti P, Hussain P, Pourzand C, Aguilar F . (1994). Mutagenesis of the H-ras protooncogene and the p53 tumor suppressor gene. Cancer Res 54: 1934s–1938s.

    CAS  PubMed  Google Scholar 

  • Chan DW, Ng IO . (2006). Knock-down of hepatitis B virus X protein reduces the tumorigenicity of hepatocellular carcinoma cells. J Pathol 208: 372–380.

    CAS  PubMed  Google Scholar 

  • de Vera ME, Shapiro RA, Nussler AK, Mudgett JS, Simmons RL, Morris Jr SM et al. (1996). Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter. Proc Natl Acad Sci USA 93: 1054–1059.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devereux TR, Stern MC, Flake GP, Yu MC, Zhang ZQ, London SJ et al. (2001). CTNNB1 mutations and beta-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Mol Carcinog 31: 68–73.

    CAS  PubMed  Google Scholar 

  • Di Bisceglie AM, Rustgi VK, Hoofnagle JH, Dusheiko GM, Lotze MT . (1988). NIH conference. Hepatocellular carcinoma. Ann Intern Med 108: 390–401.

    CAS  PubMed  Google Scholar 

  • Dominguez-Malagon H, Gaytan-Graham S . (2001). Hepatocellular carcinoma: an update. Ultrastruct Pathol 25: 497–516.

    CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    CAS  PubMed  Google Scholar 

  • Dou J, Liu P, Zhang X . (2005). Cellular response to gene expression profiles of different hepatitis C virus core proteins in the Huh-7 cell line with microarray analysis. J Nanosci Nanotechnol 5: 1230–1235.

    CAS  PubMed  Google Scholar 

  • Du Q, Park KS, Guo Z, He P, Nagashima M, Shao L et al. (2006). Regulation of human nitric oxide synthase 2 expression by Wnt beta-catenin signaling. Cancer Res 66: 7024–7031.

    CAS  PubMed  Google Scholar 

  • Dumenco L, Oguey D, Wu J, Messier N, Fausto N . (1995). Introduction of a murine p53 mutation corresponding to human codon 249 into a murine hepatocyte cell line results in growth advantage, but not in transformation. Hepatology 22: 1279–1288.

    CAS  PubMed  Google Scholar 

  • El-Serag HB, Mason AC . (1999). Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340: 745–750.

    CAS  PubMed  Google Scholar 

  • Elmore LW, Hancock AR, Chang SF, Wang XW, Chang S, Callahan CP et al. (1997). Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc Natl Acad Sci USA 94: 14707–14712.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farazi PA, DePinho RA . (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6: 674–687.

    CAS  PubMed  Google Scholar 

  • Farazi PA, Glickman J, Horner J, DePinho RA . (2006). Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res 66: 4766–4773.

    CAS  PubMed  Google Scholar 

  • Feitelson MA, Zhu M, Duan LX, London WT . (1993). Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 8: 1109–1117.

    CAS  PubMed  Google Scholar 

  • Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC et al. (1996). Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase (NOS2) expression by wild-type p53. Proc Natl Acad Sci USA 93: 2442–2447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forrester K, Lupold SE, Ott VL, Chay CH, Band V, Wang XW et al. (1995). Effects of p53 mutants on wild-type p53-mediated transactivation are cell type dependent. Oncogene 10: 2103–2111.

    CAS  PubMed  Google Scholar 

  • Forstermann U, Kleinert H . (1995). Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg's Arch Pharmacol 352: 351–364.

    CAS  Google Scholar 

  • Fujimoto H, Sasaki J, Matsumoto M, Suga M, Ando Y, Iggo R et al. (1998). Significant correlation of nitric oxide synthase activity and p53 gene mutation in stage I lung adenocarcinoma. Jpn J Cancer Res 89: 696–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto Y, Hampton LL, Luo LD, Wirth PJ, Thorgeirsson SS . (1992). Low frequency of p53 gene mutation in tumors induced by aflatoxin B1 in nonhuman primates. Cancer Res 52: 1044–1046.

    CAS  PubMed  Google Scholar 

  • Fukutomi T, Zhou Y, Kawai S, Eguchi H, Wands JR, Li J . (2005). Hepatitis C virus core protein stimulates hepatocyte growth: correlation with upregulation of wnt-1 expression. Hepatology 41: 1096–1105.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Amaro R, Garcia-Monzon C, Garcia-Buey L, Moreno-Otero R, Alonso JL, Yague E et al. (1994). Induction of tumor necrosis factor alpha production by human hepatocytes in chronic viral hepatitis. J Exp Med 179: 841–848.

    CAS  PubMed  Google Scholar 

  • Groisman IJ, Koshy R, Henkler F, Groopman JD, Alaoui-Jamali MA . (1999). Downregulation of DNA excision repair by the hepatitis B virus-x protein occurs in p53-proficient and p53-deficient cells. Carcinogenesis 20: 479–483.

    CAS  PubMed  Google Scholar 

  • Guengerich FP, Johnson WW, Ueng Y-F, Yamazaki H, Shimada T . (1996). Involvement of cytochrome P-450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ Health Perspect 104: 557–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RA, DuBois RN . (2001). Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1: 11–21.

    CAS  PubMed  Google Scholar 

  • Hentze MW, Kuhn LC . (1996). Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93: 8175–8182.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AB . (1965). The environment and disease: association or causation. Proc R Soc Med 58: 295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofseth LJ, Hussain SP, Wang XW, Harris CC . (2002). Gastrointestinal Oncology: Principles and Practice Kelsen DP, Daly JM, Kern SE, Levin B, Tepper JE (eds). Lippincott Williams & Wilkins: Philadelphia, pp 539–558.

    Google Scholar 

  • Honda M, Kaneko S, Kawai H, Shirota Y, Kobayashi K . (2001). Differential gene expression between chronic hepatitis B and C hepatic lesion. Gastroenterology 120: 955–966.

    CAS  PubMed  Google Scholar 

  • Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC . (1991). Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350: 427–428.

    CAS  PubMed  Google Scholar 

  • Huo TI, Wang XW, Forgues M, Wu CG, Spillare EA, Giannini C et al. (2001). Hepatitis B virus x mutants derived from human hepatocellular carcinoma retain the ability to abrogate p53-induced apoptosis. Oncogene 20: 3620–3628.

    CAS  PubMed  Google Scholar 

  • Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I et al. (2004). p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 64: 2350–2356.

    CAS  PubMed  Google Scholar 

  • Hussain SP, Harris CC . (1998). Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res 58: 4023–4037.

    CAS  PubMed  Google Scholar 

  • Hussain SP, Hofseth LJ, Harris CC . (2001). Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessment. Lung Cancer 34 (Suppl 2): S7–S15.

    PubMed  Google Scholar 

  • Hussain SP, Hofseth LJ, Harris CC . (2003). Radical causes of cancer. Nat Rev Cancer 3: 276–285.

    CAS  PubMed  Google Scholar 

  • Jia L, Wang XW, Harris CC . (1999). Hepatitis B virus X protein inhibits nucleotide excision repair. Int J Cancer 80: 875–879.

    CAS  PubMed  Google Scholar 

  • Jia LB, Wang XW, Sun ZT, Harris CC . (1997). Interactive effects of p53 tumor suppressor gene and hepatitis B virus in hepatocellular carcinogenesis. In: Tahara E (ed). Molecular Pathology of Gastroenterological Cancer: Application to Clinical Practice. Springer-Verlag: Tokyo, pp 209–218.

    Google Scholar 

  • Kane III JM, Shears LL, Hierholzer C, Ambs S, Billiar TR, Posner MC . (1997). Chronic hepatitis C virus infection in humans: induction of hepatic nitric oxide synthase and proposed mechanisms for carcinogenesis. J Surg Res 69: 321–324.

    CAS  PubMed  Google Scholar 

  • Kew MC . (2003). Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int 23: 405–409.

    CAS  PubMed  Google Scholar 

  • Kim SF, Huri DA, Snyder SH . (2005). Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310: 1966–1970.

    CAS  PubMed  Google Scholar 

  • Kirk GD, Camus-Randon AM, Mendy M, Goedert JJ, Merle P, Trepo C et al. (2000). Ser-249 p53 mutations in plasma DNA of patients with hepatocellular carcinoma from The Gambia. J Natl Cancer Inst 92: 148–153.

    CAS  PubMed  Google Scholar 

  • Kirk GD, Lesi OA, Mendy M, Szymanska K, Whittle H, Goedert JJ et al. (2005). 249(ser) TP53 mutation in plasma DNA, hepatitis B viral infection, and risk of hepatocellular carcinoma. Oncogene 24: 5858–5867.

    CAS  PubMed  Google Scholar 

  • Kondo M, Yamamoto H, Nagano H, Okami J, Ito Y, Shimizu J et al. (1999). Increased expression of COX-2 in nontumor liver tissue is associated with shorter disease-free survival in patients with hepatocellular carcinoma. Clin Cancer Res 5: 4005–4012.

    CAS  PubMed  Google Scholar 

  • Kowdley KV . (2004). Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology 127: S79–S86.

    CAS  PubMed  Google Scholar 

  • Kress S, Jahn UR, Buchmann A, Bannasch P, Schwarz M . (1992). p53 Mutations in human hepatocellular carcinomas from Germany. Cancer Res 52: 3220–3223.

    CAS  PubMed  Google Scholar 

  • Kuang SY, Jackson PE, Wang JB, Lu PX, Munoz A, Qian GS et al. (2004). Specific mutations of hepatitis B virus in plasma predict liver cancer development. Proc Natl Acad Sci USA 101: 3575–3580.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang SY, Lekawanvijit S, Maneekarn N, Thongsawat S, Brodovicz K, Nelson K et al. (2005). Hepatitis B 1762T/1764A mutations, hepatitis C infection, and codon 249 p53 mutations in hepatocellular carcinomas from Thailand. Cancer Epidemiol Biomarkers Prev 14: 380–384.

    CAS  PubMed  Google Scholar 

  • Laskin DL, Heck DE, Laskin JD . (1998). Role of inflammatory cytokines and nitric oxide in hepatic and pulmonary toxicity. Toxicol Lett 102–103: 289–293.

    PubMed  Google Scholar 

  • Lee JS, Thorgeirsson SS . (2006). Comparative and integrative functional genomics of HCC. Oncogene 25: 3801–3809.

    CAS  PubMed  Google Scholar 

  • Lee SG, Rho HM . (2000). Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene 19: 468–471.

    CAS  PubMed  Google Scholar 

  • Li D, Cao Y, He L, Wang NJ, Gu JR . (1993). Aberrations of p53 gene in human hepatocellular carcinoma from China. Carcinogenesis 14: 169–173.

    CAS  PubMed  Google Scholar 

  • Liu RH, Jacob JR, Hotchkiss JH, Cote PJ, Gerin JL, Tennant BC . (1994). Woodchuck hepatitis virus surface antigen induces nitric oxide synthesis in hepatocytes: possible role in hepatocarcinogenesis. Carcinogenesis 15: 2875–2877.

    CAS  PubMed  Google Scholar 

  • Lombard DB, Guarente L . (2000). Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res 60: 2331–2334.

    CAS  PubMed  Google Scholar 

  • Lucito R, Schneider RJ . (1992). Hepatitis B virus X protein activates transcription factor NF-kappa B without a requirement for protein kinase C. J Virol 66: 983–991.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn RM, Zhang YJ, Wang LY, Chen CJ, Lee PH, Lee CS et al. (1997). p53 mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan. Cancer Res 57: 3471–3477.

    CAS  PubMed  Google Scholar 

  • Mace K, Aguilar F, Wang JS, Vautravers P, Gomez-Lechon M, Gonzalea FJ et al. (1997). Aflatoxin B1 induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis 18: 1291–1297.

    CAS  PubMed  Google Scholar 

  • Madden CR, Finegold MJ, Slagle BL . (2002). Altered DNA mutation spectrum in aflatoxin b1-treated transgenic mice that express the hepatitis B virus x protein. J Virol 76: 11770–11774.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majano PL, Garcia-Monzon C, Lopez-Cabrera M, Lara-Pezzi E, Fernandez-Ruiz E, Garcia-Iglesias C et al. (1998). Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation. J Clin Invest 101: 1343–1352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marletta MA . (1993). Nitric oxide synthase structure and mechanism. J Biol Chem 268: 12231–12234.

    CAS  PubMed  Google Scholar 

  • Marrogi AJ, Khan MA, van Gijssel HE, Welsh JA, Rahim H, Demetris AJ et al. (2001). Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J Natl Cancer Inst 93: 1652–1655.

    CAS  PubMed  Google Scholar 

  • Mathonnet G, Lachance S, Alaoui-Jamali M, Drobetsky EA . (2004). Expression of hepatitis B virus X oncoprotein inhibits transcription-coupled nucleotide excision repair in human cells. Mutat Res 554: 305–318.

    CAS  PubMed  Google Scholar 

  • Messmer UK, Brune B . (1996). Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem J 319: 299–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihm S, Hutschenreiter A, Fayyazi A, Pingel S, Ramadori G . (1996). High inflammatory activity is associated with an increased amount of IFN-gamma transcripts in peripheral blood cells of patients with chronic hepatitis C virus infection. Med Microbiol Immunol (Berlin) 185: 95–102.

    CAS  Google Scholar 

  • Ming L, Thorgeirsson SS, Gail MH, Lu P, Harris CC, Wang N et al. (2002). Dominant role of hepatitis B virus qand cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology 36: 1214–1220.

    CAS  PubMed  Google Scholar 

  • Miura N, Horikawa I, Nishimoto A, Ohmura H, Ito H, Hirohashi S et al. (1997). Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet Cytogenet 93: 56–62.

    CAS  PubMed  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA . (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142.

    CAS  PubMed  Google Scholar 

  • Mowat M, Sauder M, Pereira D . (1990). The activated form of p53 is not a transactivator of the intracisternal A particle long terminal repeat promoter. Oncogene 5: 241–244.

    CAS  PubMed  Google Scholar 

  • Murakami S . (2001). Hepatitis B virus X protein: a multifunctional viral regulator. J Gastroenterol 36: 651–660.

    CAS  PubMed  Google Scholar 

  • Nathan C, Xie QW . (1994). Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915–918.

    CAS  PubMed  Google Scholar 

  • Nussler AK, Di Silvio M, Billiar TR, Hoffman RA, Geller DA, Selby R et al. (1992). Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med 176: 261–264.

    CAS  PubMed  Google Scholar 

  • Oda T, Tsuda H, Scarpa A, Sakamoto M, Hirohashi S . (1992). p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res 52: 6358–6364.

    CAS  PubMed  Google Scholar 

  • Okada T, Iizuka N, Yamada-Okabe H, Mori N, Tamesa T, Takemoto N et al. (2003). Gene expression profile linked to p53 status in hepatitis C virus-related hepatocellular carcinoma. FEBS Lett 555: 583–590.

    CAS  PubMed  Google Scholar 

  • Olivier M, Hussain SP, de Fromentel CC, Hainaut P, Harris CC . (2004). TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. In: Buffler P, Rice J, Baan R, Bird M, Boffetta P (eds). Mechanisms of Carcinogenesis: Contributions of Molecular Epidemiology. IARC Sci. Publ.: Lyon, pp 247–270.

    Google Scholar 

  • Ozturk M . (1991). p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet 338: 1356–1359.

    CAS  PubMed  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.

    PubMed  Google Scholar 

  • Pisani P, Parkin DM, Bray F, Ferlay J . (1999). Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 83: 18–29.

    CAS  PubMed  Google Scholar 

  • Ponchel F, Puisieux A, Tabone E, Michot JP, Froschl G, Morel AP et al. (1994). Hepatocarcinoma-specific mutant p53-249ser induces mitotic activity but has no effect on transforming growth factor beta 1-mediated apoptosis. Cancer Res 54: 2064–2068.

    CAS  PubMed  Google Scholar 

  • Puisieux A, Ji J, Guillot C, Legros Y, Soussi T, Isselbacher K et al. (1995). p53-mediated cellular response to DNA damage in cells with replicative hepatitis B virus. Proc Natl Acad Sci USA 92: 1342–1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qadri I, Conaway JW, Conaway RC, Schaack J, Siddiqui A . (1996). Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH and stimulates the DNA helicase activity of TFIIH. Proc Natl Acad Sci USA 93: 10578–10583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian GS, Ross RK, Yu MC, Yuan JM, Gao YT, Henderson BE et al. (1994). A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People' Republic of China. Cancer Epidemiol Biomarkers Prev 3: 3–10.

    CAS  PubMed  Google Scholar 

  • Ross RK, Yuan JM, Yu MC, Wogan GN, Qian GS, Tu JT et al. (1992). Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet 339: 943–946.

    CAS  PubMed  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM . (2005). The antioxidant function of the p53 tumor suppressor. Nat Med 11: 1306–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W, Hoeijmakers JH et al. (1993). DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260: 58–63.

    CAS  PubMed  Google Scholar 

  • Scorsone KA, Zhou YZ, Butel JS, Slagle BL . (1992). p53 mutations cluster at codon 249 in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res 52: 1635–1638.

    CAS  PubMed  Google Scholar 

  • Sengupta S, Harris CC . (2005). p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Cell Mol Biol 6: 44–55.

    CAS  Google Scholar 

  • Shackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW . (2002). Insights into the pathobiology of hepatitis C virus-associated cirrhosis: analysis of intrahepatic differential gene expression. Am J Pathol 160: 641–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman M . (1995). Hepatocellular carcinoma. Gastroenterologist 3: 55–66.

    CAS  PubMed  Google Scholar 

  • Sirma H, Giannini C, Poussin K, Paterlini P, Kremsdorf D, Brechot C . (1999). Hepatitis B virus X mutants, present in hepatocellular carcinoma tissue abrogate both the antiproliferative and transactivation effects of HBx. Oncogene 18: 4848–4859.

    CAS  PubMed  Google Scholar 

  • Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC . (2003). TP53 and liver carcinogenesis. Hum Mutat 21: 201–216.

    CAS  PubMed  Google Scholar 

  • Staib F, Robles AI, Varticovski L, Wang XW, Zeeberg BR, Sirotin M et al. (2005). The p53 tumor suppressor network is a key responder to microenvironmental components of chronic inflammatory stress. Cancer Res 65: 10255–10264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart B, Kleihues P (eds). (2003). In: World Cancer Report. IARC Press: Lyon, pp 1–352.

  • Tamir S, Tannenbaum SR . (1996). The role of nitric oxide (NO) in the carcinogenic process. Biochim Biophys Acta 1288: F31–F36.

    PubMed  Google Scholar 

  • Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y . (1999). Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem 274: 12061–12066.

    CAS  PubMed  Google Scholar 

  • Tang H, Oishi N, Kaneko S, Murakami S . (2006). Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci 97: 977–983.

    CAS  PubMed  Google Scholar 

  • Thorgeirsson SS, Grisham JW . (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31: 339–346.

    CAS  PubMed  Google Scholar 

  • Tong WM, Lee MK, Galendo D, Wang ZQ, Sabapathy K . (2006). Aflatoxin-B exposure does not lead to p53 mutations but results in enhanced liver cancer of Hupki (human p53 knock-in) mice. Int J Cancer 119: 745–749.

    CAS  PubMed  Google Scholar 

  • Tu H, Bonura C, Giannini C, Mouly H, Soussan P, Kew M et al. (2001). Biological impact of natural COOH-terminal deletions of hepatitis B virus X protein in hepatocellular carcinoma tissues. Cancer Res 61: 7803–7810.

    CAS  PubMed  Google Scholar 

  • Ueda H, Ullrich SJ, Gangemi JD, Kappel CA, Ngo L, Feitelson MA et al. (1995). Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet 9: 41–47.

    CAS  PubMed  Google Scholar 

  • Unsal H, Yakicier C, Marcais C, Kew M, Volkmann M, Zentgraf H et al. (1994). Genetic heterogeneity of hepatocellular carcinoma. Proc Natl Acad Sci USA 91: 822–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vodovotz Y, Kim PK, Bagci EZ, Ermentrout GB, Chow CC, Bahar I et al. (2004). Inflammatory modulation of hepatocyte apoptosis by nitric oxide: in vivo, in vitro, and in silico studies. Curr Mol Med 4: 753–762.

    CAS  PubMed  Google Scholar 

  • Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC . (1994). Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci USA 91: 2230–2234.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XW, Gibson MK, Vermeulen W, Yeh H, Forrester K, Sturzbecher HW et al. (1995). Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res 55: 6012–6016.

    CAS  PubMed  Google Scholar 

  • Wang XW, Hussain SP, Huo TI, Wu CG, Forgues M, Hofseth LJ et al. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Toxicology 181–182: 43–47.

    PubMed  Google Scholar 

  • Wild CP, Umbenhauer D, Chapot B, Montesano R . (1986). Monitoring of individual human exposure to aflatoxins (AF) and N-nitrosamines (NNO) by immunoassays. J Cell Biochem 30: 171–179.

    CAS  PubMed  Google Scholar 

  • Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD et al. (1992). Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225–228.

    CAS  PubMed  Google Scholar 

  • Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC et al. (2003). Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9: 416–423.

    CAS  PubMed  Google Scholar 

  • Yoon KA, Nakamura Y, Arakawa H . (2004). Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet 49: 134–140.

    CAS  PubMed  Google Scholar 

  • Yu MC, Yuan JM . (2004). Environmental factors and risk for hepatocellular carcinoma. Gastroenterology 127: S72–S78.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dorothea Dudek-Creaven for editorial and graphic assistance, Karen MacPherson for bibliographical assistance, as well as Mohammed Khan for technical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C C Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, S., Schwank, J., Staib, F. et al. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26, 2166–2176 (2007). https://doi.org/10.1038/sj.onc.1210279

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210279

Keywords

This article is cited by

Search

Quick links