Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Crippling p53 activities via knock-in mutations in mouse models

Abstract

The tumor suppressor p53 is the most frequently mutated gene in human cancer. In vivo models have been generated using knock-in alleles in which missense mutations are introduced that mimic the kinds of mutations found in human cancers, or that abolish specific p53 functions. Critically, these studies examine the in vivo and physiological functions of p53. Studies indicate that p53 missense mutations in the DNA-binding domain identical with those inherited in the Li–Fraumeni syndrome, have distinct properties. Studies in mice with mutants that separate cell-cycle arrest and apoptosis functions of p53 show delayed onset of tumor development, suggesting that both p53 functions are crucial for suppressing tumors. Mice with mutations at post-translational modification sites exhibit subtle effects on p53 activity and tumor development, indicating a fine-tuning mechanism of p53 activity in vivo. Importantly, each mutant mouse has a distinct phenotype, suggesting diverse and exquisite mechanisms of p53 regulation in different environments, different tissues and different genetic backgrounds. The generation of these mutant p53 knock-in mice has laid the groundwork for future studies to elucidate the in vivo physiological function of mutant p53 and to examine cooperating effects in combination with other alterations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Achison M, Hupp TR . (2003). Hypoxia attenuates the p53 response to cellular damage. Oncogene 22: 3431–3440.

    Article  CAS  PubMed  Google Scholar 

  • Appella E, Anderson CW . (2000). Signaling to p53: breaking the posttranslational modification code. Pathol Biol (Paris) 48: 227–245.

    CAS  Google Scholar 

  • Appella E, Anderson CW . (2001). Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268: 2764–2772.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Bartkova J, Vojtesek B, Staskova Z, Lukas J, Rejthar A et al. (1991). Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 6: 1699–1703.

    CAS  PubMed  Google Scholar 

  • Bruins W, Zwart E, Attardi LD, Iwakuma T, Hoogervorst EM, Beems RB et al. (2004). Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol Cell Biol 24: 8884–8894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadwell C, Zambetti GP . (2001). The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277: 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Chao C, Herr D, Chun J, Xu Y . (2006). Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J 25: 2615–2622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao C, Saito S, Anderson CW, Appella E, Xu Y . (2000). Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci USA 97: 11936–11941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD . (1999). Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96: 13777–13782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS et al. (2004). Regulation of p53 activity through lysine methylation. Nature 432: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Craig AL, Burch L, Vojtesek B, Mikutowska J, Thompson A, Hupp TR . (1999). Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of mdm2 (mouse double minute 2) protein are modified in human cancers. Biochem J 342 (Part 1): 133–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crook T, Marston NJ, Sara EA, Vousden KH . (1994). Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79: 817–827.

    Article  CAS  PubMed  Google Scholar 

  • de Vries A, Flores ER, Miranda B, Hsieh HM, van Oostrom CT, Sage J et al. (2002). Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA 99: 2948–2953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmolino L, Band H, Band V . (1993). Expression and stability of p53 protein in normal human mammary epithelial cells. Carcinogenesis 14: 827–832.

    Article  CAS  PubMed  Google Scholar 

  • Deppert W, Gohler T, Koga H, Kim E . (2000). Mutant p53: ‘gain of function’ through perturbation of nuclear structure and function? J Cell Biochem Suppl 35: 115–122.

    Article  PubMed  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C . (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donehower LA, Harvey M, Vogel H, McArthur MJ, Montgomery Jr CA, Park SH et al. (1995). Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinog 14: 16–22.

    Article  CAS  PubMed  Google Scholar 

  • Dumaz N, van Kranen HJ, de Vries A, Berg RJ, Wester PW, van Kreijl CF et al. (1997). The role of UV-B light in skin carcinogenesis through the analysis of p53 mutations in squamous cell carcinomas of hairless mice. Carcinogenesis 18: 897–904.

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Lin T, Uranishi H, Gu W, Xu Y . (2005). Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol 25: 5389–5395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Friedler A, Veprintsev DB, Freund SM, von Glos KI, Fersht AR . (2005). Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Structure 13: 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . (2001). A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21: 1874–1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM et al. (2000). Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404: 897–900.

    Article  CAS  PubMed  Google Scholar 

  • Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M et al. (1999). Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18: 6462–6471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Chen D, Rosenblum J, Rubin RM, Yuan ZM . (2000). Identification of a sequence element from p53 that signals for Mdm2-targeted degradation. Mol Cell Biol 20: 1243–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Roeder RG . (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  CAS  PubMed  Google Scholar 

  • Hao M, Lowy AM, Kapoor M, Deffie A, Liu G, Lozano G . (1996). Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem 271: 29380–29385.

    Article  CAS  PubMed  Google Scholar 

  • Harper JW . (2004). Neddylating the guardian; Mdm2 catalyzed conjugation of Nedd8 to p53. Cell 118: 2–4.

    Article  CAS  PubMed  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC . (1991). p53 mutations in human cancers. Science 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  • Hupp TR, Lane DP . (1994). Allosteric activation of latent p53 tetramers. Curr Biol 4: 865–875.

    Article  CAS  PubMed  Google Scholar 

  • Iacopetta B . (2003). TP53 mutation in colorectal cancer. Hum Mutat 21: 271–276.

    Article  CAS  PubMed  Google Scholar 

  • Iwakuma T, Lozano G, Flores ER . (2005). Li–Fraumeni syndrome: a p53 family affair. Cell Cycle 4: 865–867.

    Article  CAS  PubMed  Google Scholar 

  • Iwakuma T, Lozano G . (2003). MDM2, an introduction. Mol Cancer Res 1: 993–1000.

    CAS  PubMed  Google Scholar 

  • Iwakuma T, Parant JM, Fasulo M, Zwart E, Jacks T, de Vries A et al. (2004). Mutation at p53 serine 389 does not rescue the embryonic lethality in mdm2 or mdm4 null mice. Oncogene 23: 7644–7650.

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Attardi LD . (2005). p53QS: an old mutant teaches us new tricks. Cell Cycle 4: 731–734.

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Hammond EM, Giaccia A, Attardi LD . (2005). The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat Genet 37: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Lozano G . (1998). Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci USA 95: 2834–2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krummel KA, Lee CJ, Toledo F, Wahl GM . (2005). The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 102: 10188–10193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz EU, Douglas P, Lees-Miller SP . (2004). Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279: 53272–53281.

    Article  CAS  PubMed  Google Scholar 

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948–953.

    Article  CAS  PubMed  Google Scholar 

  • Lai SL, Perng RP, Hwang J . (2000). p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci 7: 64–70.

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13: 941–950.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ . (1993). The tumor suppressor genes. Annu Rev Biochem 62: 623–651.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Chen J, Elenbaas B, Levine AJ . (1994). Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8: 1235–1246.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, McDonnell TJ, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar AK et al. (2000). High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA 97: 4174–4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK et al. (2004). Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Muehlbauer KR, Schmeiser HH, Hergenhahn M, Belharazem D, Hollstein MC . (2005). p53 mutations in benzo(a)pyrene-exposed human p53 knock-in murine fibroblasts correlate with p53 mutations in human lung tumors. Cancer Res 65: 2583–2587.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Taya Y, Ikeda M, Levine AJ . (1998). Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci USA 95: 6399–6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig RL, Bates S, Vousden KH . (1996). Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol 16: 4952–4960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo JL, Tong WM, Yoon JH, Hergenhahn M, Koomagi R, Yang Q et al. (2001a). UV-induced DNA damage and mutations in Hupki (human p53 knock-in) mice recapitulate p53 hotspot alterations in sun-exposed human skin. Cancer Res 61: 8158–8163.

    CAS  PubMed  Google Scholar 

  • Luo JL, Yang Q, Tong WM, Hergenhahn M, Wang ZQ, Hollstein M . (2001b). Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20: 320–328.

    Article  CAS  PubMed  Google Scholar 

  • MacPherson D, Kim J, Kim T, Rhee BK, Van Oostrom CT, DiTullio RA et al. (2004). Defective apoptosis and B-cell lymphomas in mice with p53 point mutation at Ser 23. EMBO J 23: 3689–3699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni Jr JF, Nelson CE, Kim DH et al. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238.

    Article  CAS  PubMed  Google Scholar 

  • McKinney K, Mattia M, Gottifredi V, Prives C . (2004). p53 linear diffusion along DNA requires its C terminus. Mol Cell 16: 413–424.

    Article  CAS  PubMed  Google Scholar 

  • Milne DM, Palmer RH, Meek DW . (1992). Mutation of the casein kinase II phosphorylation site abolishes the anti-proliferative activity of p53. Nucleic Acids Res 20: 5565–5570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G . (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378: 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. (2004). Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  • Parant J, Chavez-Reyes A, Little NA, Yan W, Reinke V, Jochemsen AG et al. (2001). Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 29: 92–95.

    Article  CAS  PubMed  Google Scholar 

  • Powell B, Soong R, Iacopetta B, Seshadri R, Smith DR . (2000). Prognostic significance of mutations to different structural and functional regions of the p53 gene in breast cancer. Clin Cancer Res 6: 443–451.

    CAS  PubMed  Google Scholar 

  • Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT . (2000). Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol 20: 8458–8467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT . (1999). SUMO-1 modification activates the transcriptional response of p53. EMBO J 18: 6455–6461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roemer K . (1999). Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol Chem 380: 879–887.

    Article  CAS  PubMed  Google Scholar 

  • Rowan S, Ludwig RL, Haupt Y, Bates S, Lu X, Oren M et al. (1996). Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J 15: 827–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson JW, Appella E et al. (1997). Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36: 10117–10124.

    Article  CAS  PubMed  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C . (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Shieh SY, Taya Y, Prives C . (1999). DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J 18: 1815–1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skaug V, Ryberg D, Kure EH, Arab MO, Stangeland L, Myking AO et al. (2000). p53 mutations in defined structural and functional domains are related to poor clinical outcome in non-small cell lung cancer patients. Clin Cancer Res 6: 1031–1037.

    CAS  PubMed  Google Scholar 

  • Sluss HK, Armata H, Gallant J, Jones SN . (2004). Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol Cell Biol 24: 976–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH . (1990). Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome. Nature 348: 747–749.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al. (2002). Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277: 18817–18826.

    Article  CAS  PubMed  Google Scholar 

  • Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S et al. (2002). Chk2-deficient mice exhibit radioresistance defective p53-mediated transcription. EMBO J 21: 5195–5205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo F, Krummel KA, Lee CJ, Liu CW, Rodewald LW, Tang M et al. (2006). A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell 9: 273–285.

    Article  CAS  PubMed  Google Scholar 

  • Uesugi M, Verdine GL . (1999). The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2. Proc Natl Acad Sci USA 96: 14801–14806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unger T, Juven-Gershon T, Moallem E, Berger M, Vogt Sionov R, Lozano G et al. (1999a). Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J 18: 1805–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M et al. (1999b). Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18: 3205–3212.

    Article  CAS  PubMed  Google Scholar 

  • van Oijen MG, Slootweg PJ . (2000). Gain-of-function mutations in the tumor suppressor gene p53. Clin Cancer Res 6: 2138–2145.

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW . (1992). p53 function and dysfunction. Cell 70: 523–526.

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Earle J, Saito S, Anderson CW, Appella E, Xu Y . (2002). Mutation of mouse p53 Ser23 and the response to DNA damage. Mol Cell Biol 22: 2441–2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP . (2004). Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118: 83–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by grants CA82577 and CA34936 to GL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Lozano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwakuma, T., Lozano, G. Crippling p53 activities via knock-in mutations in mouse models. Oncogene 26, 2177–2184 (2007). https://doi.org/10.1038/sj.onc.1210278

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210278

Keywords

This article is cited by

Search

Quick links