Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer

Abstract

Asbestos is a pulmonary carcinogen known to give rise to DNA and chromosomal damage, but the exact carcinogenic mechanisms are still largely unknown. In this study, gene expression arrays were performed on lung tumor samples from 14 heavily asbestos-exposed and 14 non-exposed patients matched for other characteristics. Using a two-step statistical analysis, 47 genes were revealed that could differentiate the tumors of asbestos-exposed from those of non-exposed patients. To identify asbestos-associated regions with DNA copy number and expressional changes, the gene expression data were combined with comparative genomic hybridization microarray data. As a result, a combinatory profile of DNA copy number aberrations and expressional changes significantly associated with asbestos exposure was obtained. Asbestos-related areas were detected in 2p21–p16.3, 3p21.31, 5q35.2–q35.3, 16p13.3, 19p13.3–p13.1 and 22q12.3–q13.1. The most prominent of these, 19p13, was further characterized by microsatellite analysis in 62 patients for the differences in allelic imbalance (AI) between the two groups of lung tumors. 79% of the exposed and 45% of the non-exposed patients (P=0.008) were found to be carriers of AI in their lung tumors. In the exposed group, AI in 19p was prevalent regardless of the histological tumor type. In adenocarcinomas, AI in 19p appeared to occur independently of the asbestos exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

CGH array:

comparative genomic hybridization array

LOH:

loss of heterozygosity

AI:

allelic imbalance

MSI:

microsatellite instability

References

  • Balsara BR, Testa JR . (2002). Chromosomal imbalances in human lung cancer. Oncogene 21: 6877–6883.

    Article  CAS  PubMed  Google Scholar 

  • Blyth K, Cameron ER, Neil JC . (2005). The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 5: 376–387.

    Article  CAS  PubMed  Google Scholar 

  • Bossolasco M, Lebel M, Lemieux N, Mes-Masson AM . (1999). The human TDE gene homologue: localization to 20q13.1–13.3 and variable expression in human tumor cell lines and tissue. Mol Carcinog 26: 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Dano L, Guilly MN, Muleris M, Morlier JP, Altmeyer S, Vielh P et al. (2000). CGH analysis of radon-induced rat lung tumors indicates similarities with human lung cancers. Genes Chromosomes Cancer 29: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • De Rienzo A, Testa JR . (2000). Recent advances in the molecular analysis of human malignant mesothelioma. Clin Ther 151: 433–438.

    CAS  Google Scholar 

  • Fatma N, Jain A, Rahman Q . (1991). Frequency of sister chromatid exchange and chromosomal aberrations in asbestos cement workers. Br J Int Med 48: 103–105.

    CAS  Google Scholar 

  • Gupta N, Miyauchi S, Martindale RG, Herdman AV, Podolsky R, Miyake K et al. (2005). Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans. Biochim Biophys Acta 1741: 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom I, Raycraft J, Hayden-Ledbetter M, Ledbetter JA, Schummer M, McIntosh M et al. (2003). The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res 63: 3695–3700.

    PubMed  Google Scholar 

  • Hoang JM, Cottu PH, Thuille B, Salmon RJ, Thomas G, Hamelin R . (1997). BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res 57: 300–303.

    CAS  PubMed  Google Scholar 

  • Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E et al. (2002). Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 62: 6240–6245.

    CAS  PubMed  Google Scholar 

  • Ionov Y, Nowak N, Perucho M, Markowitz S, Cowell JK . (2004). Manipulation of nonsense mediated decay identifies gene mutations in colon cancer cells with microsatellite instability. Oncogene 23: 639–645.

    Article  CAS  PubMed  Google Scholar 

  • Karjalainen A, Anttila S . (1997). Asbestos exposure and the risk of lung cancer in urban populations. In: Chereminsinoff (ed). Health and Toxicology. Advances in Environmental Control Technology Series: Houston, USA, pp 127–136.

    Google Scholar 

  • Karjalainen A, Anttila S, Heikkila L, Karhunen P, Vainio H . (1993). Asbestos exposure among Finnish lung cancer patients: occupational history and fiber concentration in lung tissue. Am J Int Med 23: 461–471.

    Article  CAS  Google Scholar 

  • Kettunen E, Anttila S, Seppanen JK, Karjalainen A, Edgren H, Lindstrom I et al. (2004). Differentially expressed genes in nonsmall cell lung cancer: expression profiling of cancer-related genes in squamous cell lung cancer. Cancer Genet Cytogenet 149: 98–106.

    Article  CAS  PubMed  Google Scholar 

  • Li R, Wang H, Bekele BN, Yin Z, Caraway NP, Katz RL et al. (2006). Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene 25: 2628–2635.

    Article  CAS  PubMed  Google Scholar 

  • Marczynski B, Czuppon A, Marek W, Reichel G, Baur X . (1994). Increased incidence of DNA double-strand breaks and anti-ds DNA antibodies in blood of workers occupationally exposed to asbestos. Hum Exp Toxicol 13: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Marczynski B, Rozynek P, Kraus T, Schlosser S, Raithel HJ, Baur X . (2000). Levels of 8-hydroxy-2′-deoxyguanosine in DNA of white blood cells from workers highly exposed to asbestos in Germany. Mutat Res 468: 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Marsit CJ, Hasegawa M, Hirao T, Kim D-H, Aldape K, Hinds PW et al. (2004). Loss of heterozygosity of chromosome 3p21 is associated with mutant TP53 and better patient survival in non-small-cell lung cancer. Cancer Res 64: 8702–8707.

    Article  CAS  PubMed  Google Scholar 

  • Medina PP, Carretero J, Ballestar E, Angulo B, Lopez-Rios F, Esteller M et al. (2005). Transcriptional targets of the chromatin-remodelling factor SMARCA4/BRG1 in lung cancer cells. Hum Mol Genet 14: 973–982.

    Article  CAS  PubMed  Google Scholar 

  • Michiels S, Koscielny S, Hill C . (2005). Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365: 488–492.

    Article  CAS  PubMed  Google Scholar 

  • Nymark P, Wikman H, Ruosaari S, Hollmén J, Vanhala E, Karjalainen A et al. (2006). Identification of specific gene copy number changes in asbestos-related lung cancer. Cancer Res 66: 5737–5743.

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Goto S, Nakamoto H, Udud K, Papai Z, Horvath I . (2005). Lung cancer in smoking patients inversely alters the activity of hOGG1 and hNTH1. Cancer Lett 219: 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE . (2003). Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 63: 560–566.

    CAS  PubMed  Google Scholar 

  • Safar AM, Spencer III H, Su X, Coffey M, Cooney CA, Ratnasinghe LD et al. (2005). Methylation profiling of archived non-small cell lung cancers: a promising prognostic system. Clin Cancer Res 11: 4400–4405.

    Article  CAS  PubMed  Google Scholar 

  • Sakakura C, Hagiwara A, Miyagawa K, Nakashima S, Yoshikawa T, Kin S et al. (2005). Frequent downregulation of the runt domain transcription factors RUNX1, RUNX3 and their cofactor CBFB in gastric cancer. Int J Cancer 113: 221–228.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Cespedes M, Ahrendt SA, Piantadosi S, Rosell R, Monzo M, Wu L et al. (2001). Chromosomal alterations in lung adenocarcinomas from smokers and nonsmokers. Cancer Res 61: 1309–1313.

    CAS  PubMed  Google Scholar 

  • Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  • Selikoff IJ, Hammond EC, Churg J . (1968). Asbestos exposure, smoking, and neoplasia. JAMA 204: 106–112.

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Gulumian M, Hei TK, Kamp D, Rahman Q, Mossman B . (2003a). Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med 34: 1117–1129.

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Ramos-Nino M, Mossman B . (2003b). Cell signaling and transcription factor activation by asbestos in lung injury and disease. Int J Biochem Cell Biol 35: 1198–1209.

    Article  CAS  PubMed  Google Scholar 

  • Takamochi K, Ogura T, Yokose T, Ochiai A, Nagai K, Nishiwaki Y et al. (2004). Molecular analysis of the TSC1 gene in adenocarcinoma of the lung. Lung Cancer 46: 271–281.

    Article  PubMed  Google Scholar 

  • Upadhyay D, Kamp DW . (2003). Asbestos-induced pulmonary toxicity: role of DNA damage and apoptosis. Exp Biol Med 228: 650–659.

    Article  CAS  Google Scholar 

  • Wikman H, Kettunen E, Seppänen JK, Karjalainen A, Hollmen J, Anttila S et al. (2002). Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene 21: 5804–5813.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Mrs Päivi Tuominen and Mrs Tuula Stjernvall for excellent technical assistance. We also thank Mrs Helinä Urhonen and Dr Kaisa Salmenkivi for helping with collecting the samples. This work is financially supported by the Academy of Finland Grants 200802 and 207469, Finnish Cancer Foundations, Sigrid Jusélius Foundation, Finnish Work Environment Fund Grant 102125, and Graduate school in Computational Biology, Bioinformatics and Biometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Anttila.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wikman, H., Ruosaari, S., Nymark, P. et al. Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer. Oncogene 26, 4730–4737 (2007). https://doi.org/10.1038/sj.onc.1210270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210270

Keywords

This article is cited by

Search

Quick links