Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ARF promotes accumulation of retinoblastoma protein through inhibition of MDM2

Abstract

The INK4a/ARF locus, encoding two tumor suppressor proteins, p16INK4a and p14ARF (ARF), plays key roles in many cellular processes including cell proliferation, apoptosis, cellular senescence and differentiation. Inactivation of INK4a/ARF is one of the most frequent events during human cancer development. Although p16INK4a is a critical component in retinoblastoma protein (Rb)-mediated growth regulatory pathway, p14ARF plays a pivotal role in the activation of p53 upon oncogenic stress signals. A body of evidence indicates that ARF also possesses growth suppression functions independent of p53, the mechanism of which is not well understood. We have recently shown that MDM2 interacts with Rb and promotes proteasome-dependent Rb degradation. In this study, we show that ARF disrupts MDM2–Rb interaction resulting in Rb accumulation. Wild-type ARF, but not ARF mutant defective in MDM2 interaction, stabilizes Rb and inhibits colony foci formation independent of p53. In addition, ablation of Rb impairs ARF function in growth suppression. Thus, this study demonstrates that ARF plays a direct role in regulation of Rb and suggests that inactivation of ARF may lead to defects in both p53 and Rb pathways in human cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Berezutskaya E, Yu B, Morozov A, Raychaudhuri P, Bagchi S . (1997). Differential regulation of the pocket domains of the retinoblastoma family proteins by the HPV16 E7 oncoprotein. Cell Growth Differ 8: 1277–1286.

    CAS  PubMed  Google Scholar 

  • Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ, Kriwacki RW . (2001). Defining the molecular basis of Arf and Hdm2 interactions. J Mol Biol 314: 263–277.

    Article  CAS  PubMed  Google Scholar 

  • Boyer SN, Wazer DE, Band V . (1996). E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin–proteasome pathway. Cancer Res 56: 4620–4624.

    CAS  PubMed  Google Scholar 

  • Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK . (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90: 8033–8037.

    Article  CAS  PubMed  Google Scholar 

  • Carnero A, Hudson JD, Price CM, Beach DH . (2000). p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2: 148–155.

    Article  CAS  PubMed  Google Scholar 

  • Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB . (2001). Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3: 667–674.

    Article  CAS  PubMed  Google Scholar 

  • Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI . (2006). The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443: 214–217.

    Article  CAS  PubMed  Google Scholar 

  • Dannenberg JH, van Rossum A, Schuijff L, te Riele H . (2000). Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev 14: 3051–3064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias SS, Milne DM, Meek DW . (2006). c-Abl phosphorylates Hdm2 at tyrosine 276 in response to DNA damage and regulates interaction with ARF. Oncogene 25: 6666–6671.

    Article  CAS  PubMed  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg Z, Vogt Sionov R, Berger M, Zwang Y, Perets R, Van Etten RA et al. (2002). Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J 21: 3715–3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groth A, Weber JD, Willumsen BM, Sherr CJ, Roussel MF . (2000). Oncogenic Ras induces p19ARF and growth arrest in mouse embryo fibroblasts lacking p21Cip1 and p27Kip1 without activating cyclin D-dependent kinases. J Biol Chem 275: 27473–27480.

    CAS  PubMed  Google Scholar 

  • Hainaut P, Soussi T, Shomer B, Hollstein M, Greenblatt M, Hovig E et al. (1997). Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res 25: 151–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall M, Peters G . (1996). Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 68: 67–108.

    Article  CAS  PubMed  Google Scholar 

  • Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T et al. (2000). Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med 6: 96–99.

    Article  CAS  PubMed  Google Scholar 

  • Honda R, Yasuda H . (1999). Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18: 22–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida S, Akiyama Y, Nakajima T, Ichikawa W, Nihei Z, Sugihara K et al. (2000). Alterations and hypermethylation of the p14(ARF) gene in gastric cancer. Int J Cancer 87: 654–658.

    Article  CAS  PubMed  Google Scholar 

  • Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ . (1998). Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95: 8292–8297.

    Article  CAS  PubMed  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Sauroja I, Punnonen K, Jansen C, Hemminki K . (1998). Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell lines. Genes Chromosomes Cancer 23: 273–277.

    Article  CAS  PubMed  Google Scholar 

  • Leduc C, Claverie P, Eymin B, Col E, Khochbin S, Brambilla E et al. (2006). p14(ARF) promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene 25: 4147–4154.

    Article  CAS  PubMed  Google Scholar 

  • Llanos S, Clark PA, Rowe J, Peters G . (2001). Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat Cell Biol 3: 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Midgley CA, Desterro JM, Saville MK, Howard S, Sparks A, Hay RT et al. (2000). An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 19: 2312–2323.

    Article  CAS  PubMed  Google Scholar 

  • Modestou M, Puig-Antich V, Korgaonkar C, Eapen A, Quelle DE . (2001). The alternative reading frame tumor suppressor inhibits growth through p21-dependent and p21-independent pathways. Cancer Res 61: 3145–3150.

    CAS  PubMed  Google Scholar 

  • Momand J, Jung D, Wilczynski S, Niland J . (1998). The MDM2 gene amplification database. Nucleic Acids Res 26: 3453–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen DX, Baglia LA, Huang SM, Baker CM, McCance DJ . (2004). Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J 23: 1609–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan W, Datta A, Adami GR, Raychaudhuri P, Bagchi S . (2003). P19ARF inhibits the functions of the HPV16 E7 oncoprotein. Oncogene 22: 5496–5503.

    Article  CAS  PubMed  Google Scholar 

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L et al. (1998). The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92: 713–723.

    Article  CAS  PubMed  Google Scholar 

  • Quelle DE, Cheng M, Ashmun RA, Sherr CJ . (1997). Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc Natl Acad Sci USA 94: 669–673.

    Article  CAS  PubMed  Google Scholar 

  • Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E, Aveyard J et al. (2001). A germline deletion of p14(ARF) but not CDKN2A in a melanoma–neural system tumour syndrome family. Hum Mol Genet 10: 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Rizos H, Puig S, Badenas C, Malvehy J, Darmanian AP, Jimenez L et al. (2001). A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 20: 5543–5547.

    Article  CAS  PubMed  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B et al. (2000). Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14: 3037–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R et al. (2005). MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 20: 699–708.

    Article  CAS  PubMed  Google Scholar 

  • Sdek P, Ying H, Zheng H, Margulis A, Tang X, Tian K et al. (2004). The central acidic domain of MDM2 is critical in inhibition of Rb-mediated suppression of E2F and cell growth. J Biol Chem 279: 53317–53322.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M . (2000). The INK4a/ARF locus in murine tumorigenesis. Carcinogenesis 21: 865–869.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA . (1996). Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, Ramsey MR, Balasubramanian P, Castrillon DH, DePinho RA . (2004). The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis. Oncogene 23: 379–385.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (2001). The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2: 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Sionov RV, Coen S, Goldberg Z, Berger M, Bercovich B, Ben-Neriah Y et al. (2001). c-Abl regulates p53 levels under normal and stress conditions by preventing its nuclear export and ubiquitination. Mol Cell Biol 21: 5869–5878.

    Article  CAS  PubMed  Google Scholar 

  • Sionov RV, Moallem E, Berger M, Kazaz A, Gerlitz O, Ben-Neriah Y et al. (1999). c-Abl neutralizes the inhibitory effect of Mdm2 on p53. J Biol Chem 274: 8371–8374.

    Article  CAS  PubMed  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001–5014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui G, Affar el B, Shi Y, Brignone C, Wall NR, Yin P et al. (2004). Yin Yang 1 is a negative regulator of p53. Cell 117: 859–872.

    Article  CAS  PubMed  Google Scholar 

  • Tao W, Levine AJ . (1999). P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96: 6937–6941.

    Article  CAS  PubMed  Google Scholar 

  • Tsai KY, MacPherson D, Rubinson DA, Nikitin AY, Bronson R, Mercer KL et al. (2002). ARF mutation accelerates pituitary tumor development in Rb+/− mice. Proc Natl Acad Sci USA 99: 16865–16870.

    Article  CAS  PubMed  Google Scholar 

  • Uchida C, Miwa S, Kitagawa K, Hattori T, Isobe T, Otani S et al. (2005). Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J 24: 160–169.

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan M, Tsuchida N, Shanmugam G . (2001). Selective deletion of p14(ARF) exon 1beta of the INK4a locus in oral squamous cell carcinomas of Indians. Oral Oncol 37: 341–344.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, Rauscher III FJ et al. (2005). MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 24: 3279–3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sampath A, Raychaudhuri P, Bagchi S . (2001). Both Rb and E7 are regulated by the ubiquitin proteasome pathway in HPV-containing cervical tumor cells. Oncogene 20: 4740–4749.

    Article  CAS  PubMed  Google Scholar 

  • Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF et al. (2000a). p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev 14: 2358–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber JD, Kuo ML, Bothner B, DiGiammarino EL, Kriwacki RW, Roussel MF et al. (2000b). Cooperative signals governing ARF–mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 20: 2517–2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . (1999). Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR et al. (1995). Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375: 694–698.

    Article  CAS  PubMed  Google Scholar 

  • Ying H, Xiao ZX . (2006). Targeting retinoblastoma protein for degradation by proteasomes. Cell Cycle 5: 506–508.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xiong Y . (1999). Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 3: 579–591.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xiong Y, Yarbrough WG . (1998). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Ronald A DePinho, Scott Lowe and Yanping Zhang for plasmids and viruses. We are grateful to Drs Charles Sherr and Guillermina Lozano for MEF cells. We thank Yian Xiao for critical reading of the manuscript. This work was supported by the Karin Grunebaum Cancer Research Fellowship and the Boston University Graduate Student Research Fellowship (to DLC) and NIH grants (to ZX Xiao).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z-X J Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, D., Qiu, W., Ying, H. et al. ARF promotes accumulation of retinoblastoma protein through inhibition of MDM2. Oncogene 26, 4627–4634 (2007). https://doi.org/10.1038/sj.onc.1210254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210254

Keywords

This article is cited by

Search

Quick links