Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is known for its very poor overall prognosis. Accurate early diagnosis and new therapeutic modalities are therefore urgently needed. We used 377 feature microRNA (miRNA) arrays to investigate miRNA expression in normal pancreas, chronic pancreatitis, and PDAC tissues as well as PDAC-derived cell lines. A pancreatic miRNome was established comparing the data from normal pancreas with a reference set of 33 human tissues. The expression of miR-216 and -217 and lack of expression of miR-133a were identified as characteristic of pancreas tissue. Unsupervised clustering showed that the three pancreatic tissues types can be classified according to their respective miRNA expression profiles. We identified 26 miRNAs most prominently misregulated in PDAC and a relative quantitative reverse transcriptase-polymerase chain reaction index using only miR-217 and -196a was found to discriminate normal pancreas, chronic pancreatitis and cancerous tissues, establishing a potential utility for miRNAs in diagnostic procedures. Lastly, comparing differentially expressed genes from PDAC with predicted miRNA target genes for the top 26 miRNAs, we identified potential novel links between aberrant miRNA expression and known target genes relevant to PDAC biology. Our data provides novel insights into the miRNA-driven pathophysiological mechanisms involved in PDAC development and offers new candidate targets to be exploited both for diagnostic and therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 5
Figure 4
Figure 6

Similar content being viewed by others

References

  • Al-Aynati MM, Radulovich N, Riddell RH, Tsao MS . (2004). Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res 10: 1235–1240.

    Article  CAS  Google Scholar 

  • Altomare DA, Tanno S, De Rienzo A, Klein-Szanto AJ, Skele KL, Hoffman JP et al. (2003). Frequent activation of AKT2 kinase in human pancreatic carcinomas. J Cell Biochem 88: 470–476.

    CAS  Google Scholar 

  • Baskerville S, Bartel DP . (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11: 241–247.

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y . (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57: 289–300.

    Google Scholar 

  • Buchholz M, Braun M, Heidenblut A, Kestler HA, Kloppel G, Schmiegel W et al. (2005). Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene 24: 6626–6636.

    Article  CAS  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801.

    Article  CAS  Google Scholar 

  • Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351–1358.

    Article  CAS  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymp. Proc Natl Acad Sci USA 103: 7024–7029.

    Article  CAS  Google Scholar 

  • Davison TS, Johnson CD, Andruss BF . (2006). Analyzing micro-RNA expression using microarrays. Methods Enzymol 411: 14–34.

    Article  CAS  Google Scholar 

  • Dessimoz J, Bonnard C, Huelsken J, Grapin-Botton A . (2005). Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr Biol 15: 1677–1683.

    Article  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    Article  CAS  Google Scholar 

  • Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102: 18081–18086.

    Article  CAS  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. (2005a). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102: 19075–19080.

    Article  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005b). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  Google Scholar 

  • Heidenblut AM, Luttges J, Buchholz M, Heinitz C, Emmersen J, Nielsen KL et al. (2004). aRNA-longSAGE: a new approach to generate SAGE libraries from microdissected cells. Nucleic Acids Res 32: e131.

    Article  Google Scholar 

  • Heiser PW, Lau J, Taketo MM, Herrera PL, Hebrok M . (2006). Stabilization of beta-catenin impacts pancreas growth. Development 133: 2023–2032.

    Article  CAS  Google Scholar 

  • Hornstein E, Mansfield JH, Yekta S, Hu JK-H, Harfe BD, McManus MT et al. (2005). The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438: 671–674.

    Article  CAS  Google Scholar 

  • Hu YX, Watanabe H, Li P, Wang Y, Ohtsubo K, Yamaguchi Y et al. (2000). An immunohistochemical analysis of p27 expression in human pancreatic carcinomas. Pancreas 21: 226–230.

    Article  CAS  Google Scholar 

  • Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 (Suppl 1): S96–S104.

    Article  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with/‘antagomirs/’. Nature 438: 685–689.

    Article  Google Scholar 

  • Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M et al. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101: 9740–9744.

    Article  CAS  Google Scholar 

  • Lu CD, Morita S, Ishibashi T, Hara H, Isozaki H, Tanigawa N . (1999). Loss of p27Kip1 expression independently predicts poor prognosis for patients with resectable pancreatic adenocarcinoma. Cancer 85: 1250–1260.

    Article  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432: 226–230.

    Article  CAS  Google Scholar 

  • Prasad NB, Biankin AV, Fukushima N, Maitra A, Dhara S, Elkahloun AG et al. (2005). Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res 65: 1619–1626.

    Article  CAS  Google Scholar 

  • Schlieman MG, Fahy BN, Ramsamooj R, Beckett L, Bold RJ . (2003). Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer 89: 2110–2115.

    Article  CAS  Google Scholar 

  • Segara D, Biankin AV, Kench JG, Langusch CC, Dawson AC, Skalicky DA et al. (2005). Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia. Clin Cancer Res 11: 3587–3596.

    Article  CAS  Google Scholar 

  • Sevignani C, Calin GA, Siracusa LD, Croce CM . (2006). Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17: 189–202.

    Article  CAS  Google Scholar 

  • Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R et al. (2005). An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 11: 1461–1470.

    Article  CAS  Google Scholar 

  • Sood P, Krek A, Zavolan M, Macino G, Rajewsky N . (2006). Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA 103: 2746–2751.

    Article  CAS  Google Scholar 

  • Taganov KD, Boldin MP, Chang K-J, Baltimore D . (2006). NF-{kappa}B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103: 12481–12486.

    Article  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R . (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20: 515–524.

    Article  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  Google Scholar 

  • Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C . (2006). A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 91: 3584–3591.

    Article  CAS  Google Scholar 

  • Yekta S, Shih I-H, Bartel DP . (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304: 594–596.

    Article  CAS  Google Scholar 

  • Yeo T, Hruban R, Leach S, Wilentz R, Sohn T, Kern S et al. (2002). Pancreatic cancer. Curr Prob Cancer 26: 176–275.

    Article  Google Scholar 

  • Zeng G, Germinaro M, Micsenyi A, Monga NK, Bell A, Sood A et al. (2006). Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma. Neoplasia 8: 279–289.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bernard Andruss for critical review of the manuscript and Matthias Becker for his excellent technical assistance. This work was supported in part by the Deutsche Krebshilfe (BS and SAH, 70-2988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Hahn.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szafranska, A., Davison, T., John, J. et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26, 4442–4452 (2007). https://doi.org/10.1038/sj.onc.1210228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210228

Keywords

This article is cited by

Search

Quick links